## Fachbereich Mathematik

- Decomposition of Matrices and Static Multileaf Collimators: A Survey (2006)
- Multileaf Collimators (MLC) consist of (currently 20-100) pairs of movable metal leaves which are used to block radiation in Intensity Modulated Radiation Therapy (IMRT). The leaves modulate a uniform source of radiation to achieve given intensity profiles. The modulation process is modeled by the decomposition of a given non-negative integer matrix into a non-negative linear combination of matrices with the (strict) consecutive ones property.

- An Improved Epsilon-Constraint Method for Multiobjective Programming (2005)
- In this paper we revisit one of the most important scalarization techniques used in multiobjective programming, the \(\varepsilon\)-constraint method.

- Decomposition of Integer Matrices and Multileaf Collimator Sequencing (2004)
- In this paper we consider the problem of decomposing an integer matrix into a weighted sum of binary matrices that have to strict consecutive ones property.

- Locational planning in the Mathematics Curriculum of High Schools (2002)
- Dealing with problems from locational planning in schools can enrich the mathematical education. In this report we describe planar locational problems which can be used in mathematical lessons. The problems production of a semiconductor plate, design of a fire brigade building and the warehouse problem are from real-world. The problems are worked out detailed so that the usage for school lessons is possible.

- A Level Set Method for Multiobjective Combinatorial Optimization: Application to the Quadratic Assignment Problem (2002)
- Multiobjective combinatorial optimization problems have received increasing attention in recent years. Nevertheless, many algorithms are still restricted to the bicriteria case. In this paper we propose a new algorithm for computing all Pareto optimal solutions. Our algorithm is based on the notion of level sets and level curves and contains as a subproblem the determination of K best solutions for a single objective combinatorial optimization problem. We apply the method to the Multiobjective Quadratic Assignment Problem (MOQAP). We present two algorithms for ranking QAP solutions and nally give computational results comparing the methods.

- Some Complexity Results for k-Cardinality Minimum Cut Problems (2000)
- Many polynomially solvable combinatorial optimization problems (COP) become NP when we require solutions to satisfy an additional cardinality constraint. This family of problems has been considered only recently. We study a newproblem of this family: the k-cardinality minimum cut problem. Given an undirected edge-weighted graph the k-cardinality minimum cut problem is to find a partition of the vertex set V in two sets V 1 , V 2 such that the number of the edges between V 1 and V 2 is exactly k and the sum of the weights of these edges is minimal. A variant of this problem is the k-cardinality minimum s-t cut problem where s and t are fixed vertices and we have the additional request that s belongs to V 1 and t belongs to V 2 . We also consider other variants where the number of edges of the cut is constrained to be either less or greater than k. For all these problems we show complexity results in the most significant graph classes.

- A Fuzzy Programming Approach to Multicriteria Facility Location Problems (1999)
- Facility Location Problems are concerned with the optimal location of one or several new facilities, with respect to a set of existing ones. The objectives involve the distance between new and existing facilities, usually a weighted sum or weighted maximum. Since the various stakeholders (decision makers) will have different opinions of the importance of the existing facilities, a multicriteria problem with several sets of weights, and thus several objectives, arises. In our approach, we assume the decision makers to make only fuzzy comparisons of the different existing facilities. A geometric mean method is used to obtain the fuzzy weights for each facility and each decision maker. The resulting multicriteria facility location problem is solved using fuzzy techniques again. We prove that the final compromise solution is weakly Pareto optimal and Pareto optimal, if it is unique, or under certain assumptions on the estimates of the Nadir point. A numerical example is considered to illustrate the methodology.

- The Balance Space Approach to Multicriteria Decision Making - Involving the Decision Maker (2000)
- The balance space approach (introduced by Galperin in 1990) provides a new view on multicriteria optimization. Looking at deviations from global optimality of the different objectives, balance points and balance numbers are defined when either different or equal deviations for each objective are allowed. Apportioned balance numbers allow the specification of proportions among the deviations. Through this concept the decision maker can be involved in the decision process. In this paper we prove that the apportioned balance number can be formulated by a min-max operator. Furthermore we prove some relations between apportioned balance numbers and the balance set, and see the representation of balance numbers in the balance set. The main results are necessary and sufficient conditions for the balance set to be exhaustive, which means that by multiplying a vector of weights (proportions of deviation) with its corresponding apportioned balance number a balance point is attained. The results are used to formulate an interactive procedure for multicriteria optimization. All results are illustrated by examples.

- Nadir Values: Computation and Use in Compromise Programming (2000)
- In this paper we investigate the problem offending the Nadir point for multicriteria optimization problems (MOP). The Nadir point is characterized by the component wise maximal values of efficient points for (MOP). It can be easily computed in the bicriteria case. However, in general this problem is very difficult. We review some existing methods and heuristics and propose some new ones. We propose a general method to compute Nadir values for the case of three objectives, based on theoretical results valid for any number of criteria. We also investigate the use of the Nadir point for compromise programming, when the goal is to be as far away as possible from the worst outcomes. We prove some results about (weak) Pareto optimality of the resulting solutions. The results are illustrated by examples.

- On the Number of Criteria Needed to Decide Pareto Optimality (2000)
- In this paper we address the question of how many objective functions are needed to decide whether a given point is a Pareto optimal solution for a multicriteria optimization problem. We extend earlier results showing that the set of weakly Pareto optimal points is the union of Pareto optimal sets of subproblems and show their limitations. We prove that for strictly quasi-convex problems in two variables Pareto optimality can be decided by consideration of at most three objectives at a time. Our results are based on a geometric characterization of Pareto, strict Pareto and weak Pareto solutions and Helly's Theorem. We also show that a generalization to quasi-convex objectives is not possible, and state a weaker result for this case. Furthermore, we show that a generalization to strictly Pareto optimal solutions is impossible, even in the convex case.