## Fachbereich Mathematik

### Refine

#### Year of publication

#### Document Type

- Preprint (31)
- Report (3)
- Periodical (1)

#### Has Fulltext

- no (35) (remove)

#### Keywords

- harmonic density (2)
- wavelets (2)
- Abstract linear systems theory (1)
- Brownian motion (1)
- CHAMP (1)
- CHAMP <Satellitenmission> (1)
- Geomathematik (1)
- Geothermal Flow (1)
- Geothermal Systems (1)
- Gravimetrie (1)

- Wavelet Approximations on Closed Surfaces and their Application to Boundary-Value Problems of Potential Theory (1998)
- Wavelets on closed surfaces in Euclidean space R3 are introduced starting from a scale discrete wavelet transform for potentials harmonic down to a spherical boundary. Essential tools for approximation are integration formulas relating an integral over the sphere to suitable linear combinations of functional values (resp. normal derivatives) on the closed surface under consideration. A scale discrete version of multiresolution is described for potential functions harmonic outside the closed surface and regular at infinity. Furthermore, an exact fully discrete wavelet approximation is developed in case of band-limited wavelets. Finally, the role of wavelets is discussed in three problems, namely (i) the representation of a function on a closed surface from discretely given data, (ii) the (discrete) solution of the exterior Dirichlet problem, and (iii) the (discrete) solution of the exterior Neumann problem.

- The finite-section approximation for ill-posed integral equations on the half-line (2001)
- Integral equations on the half of line are commonly approximated by the finite-section approximation, in which the infinite upper limit is replaced by apositie number called finite-section parameter. In this paper we consider the finite-section approximation for first kind intgral equations which are typically ill-posed and call for regularization. For some classes of such equations corresponding to inverse problems from optics and astronomy we indicate the finite-section parameters that allows to apply standard regularization techniques. Two discretization schemes for the finite-section equations ar also proposed and their efficiency is studied.

- Tensor Spherical Harmonics and Tensor Spherical Splines (1993)
- In this paper, we deal with the problem of spherical interpolation of discretely given data of tensorial type. To this end, spherical tensor fields are investigated and a decomposition formula is described. Tensor spherical harmonics are introduced as eigenfunctions of a tensorial analogon to the Beltrami operator and discussed in detail. Based on these preliminaries, a spline interpolation process is described and error estimates are presented. Furthermore, some relations between the spline basis functions and the theory of radial basis functions are developed.

- Spherical Wavelet Transform and its Discretization (1996)
- A continuous version of spherical multiresolution is described, starting from continuous wavelet transform on the sphere. Scale discretization enables us to construct spherical counterparts to Daubechies wavelets and wavelet packets (known from Euclidean theory). Essential tool is the theory of singular integrals on the sphere. It is shown that singular integral operators forming a semigroup of contraction operators of class (Co) (like Abel-Poisson or Gauß-Weierstraß operators) lead in canonical way to (pyramidal) algorithms.

- Spherical panel clustering and its numerical aspects (1997)
- In modern approximation methods linear combinations in terms of (space localizing) radial basis functions play an essential role. Areas of application are numerical integration formulas on the uni sphere omega corresponding to prescribed nodes, spherical spline interpolation, and spherical wavelet approximation. the evaluation of such a linear combination is a time consuming task, since a certain number of summations, multiplications and the calculation of scalar products are required. This paper presents a generalization of the panel clustering method in a spherical setup. The economy and efficiency of panel clustering is demonstrated for three fields of interest, namely upward continuation of the earth's gravitational potential, geoid computation by spherical splines and wavelet reconstruction of the gravitational potential.

- Runge-Walsh Wavelet Approximation for (1997)
- Metaharmonic wavelets are introduced for constructing the solution of theHelmholtz equation (reduced wave equation) corresponding to Dirichlet's orNeumann's boundary values on a closed surface approach leading to exactreconstruction formulas is considered in more detail. A scale discrete version ofmultiresolution is described for potential functions metaharmonic outside theclosed surface and satisfying the radiation condition at infinity. Moreover, wediscuss fully discrete wavelet representations of band-limited metaharmonicpotentials. Finally, a decomposition and reconstruction (pyramid) scheme foreconomical numerical implementation is presented for Runge-Walsh waveletapproximation.

- Regularized Multiresolution Recovery of the Mass Density Distribution From Satellite Data of the Earth´s Gravitational Field (2004)
- The inverse problem of recovering the Earth's density distribution from data of the first or second derivative of the gravitational potential at satellite orbit height is discussed for a ball-shaped Earth. This problem is exponentially ill-posed. In this paper a multiscale regularization technique using scaling functions and wavelets constructed for the corresponding integro-differential equations is introduced and its numerical applications are discussed. In the numerical part the second radial derivative of the gravitational potential at 200 km orbitheight is calculated on a point grid out of the NASA/GSFC/NIMA Earth Geopotential Model (EGM96). Those simulated derived data out of SGG (satellite gravity gradiometry) satellite measurements are taken for convolutions with the introduced scaling functions yielding a multiresolution analysis of harmonic density variations in the Earth's crust. Moreover, the noise sensitivity of the regularization technique is analyzed numerically.

- Regularized Multiresolution Recovery of the Mass Density Distribution from Satellite Data of the Earth's Gravitational Field (2003)
- The inverse problem of recovering the Earth's density distribution from satellite data of the first or second derivative of the gravitational potential at orbit height is discussed. This problem is exponentially ill-posed. In this paper a multiscale regularization technique using scaling functions and wavelets constructed for the corresponding integro-differential equations is introduced and its numerical applications are discussed. In the numerical part the second radial derivative of the gravitational potential at 200 km orbit height is calculated on a point grid out of the NASA/GSFC/NIMA Earth Geopotential Model (EGM96). Those simulated derived data out of SGG satellite measurements are taken for convolutions with the introduced scaling functions yielding a multiresolution analysis of harmonic density variations in the Earth's crust.

- Regularization Wavelets and Multiresolution (1997)
- Many problems arising in (geo)physics and technology can be formulated as compact operator equations of the first kind \(A F = G\). Due to the ill-posedness of the equation a variety of regularization methods are in discussion for an approximate solution, where particular emphasize must be put on balancing the data and the approximation error. In doing so one is interested in optimal parameter choice strategies. In this paper our interest lies in an efficient algorithmic realization of a special class of regularization methods. More precisely, we implement regularization methods based on filtered singular value decomposition as a wavelet analysis. This enables us to perform, e.g., Tikhonov-Philips regularization as multiresolution. In other words, we are able to pass over from one regularized solution to another one by adding or subtracting so-called detail information in terms of wavelets. It is shown that regularization wavelets as proposed here are efficiently applicable to a future problem in satellite geodesy, viz. satellite gravity gradiometry.