## Fachbereich Mathematik

- Modeling and Simulation of a Moving Rigid Body in a Rarefied Gas (2015)
- We present a numerical scheme to simulate a moving rigid body with arbitrary shape suspended in a rarefied gas micro flows, in view of applications to complex computations of moving structures in micro or vacuum systems. The rarefied gas is simulated by solving the Boltzmann equation using a DSMC particle method. The motion of the rigid body is governed by the Newton-Euler equations, where the force and the torque on the rigid body is computed from the momentum transfer of the gas molecules colliding with the body. The resulting motion of the rigid body affects in turn again the gas flow in the surroundings. This means that a two-way coupling has been modeled. We validate the scheme by performing various numerical experiments in 1-, 2- and 3-dimensional computational domains. We have presented 1-dimensional actuator problem, 2-dimensional cavity driven flow problem, Brownian diffusion of a spherical particle both with translational and rotational motions, and finally thermophoresis on a spherical particles. We compare the numerical results obtained from the numerical simulations with the existing theories in each test examples.

- Modeling and design optimization of textile-like materials via homogenization and one-dimensional models of elasticity (2015)
- The work consists of two parts. In the first part an optimization problem of structures of linear elastic material with contact modeled by Robin-type boundary conditions is considered. The structures model textile-like materials and possess certain quasiperiodicity properties. The homogenization method is used to represent the structures by homogeneous elastic bodies and is essential for formulations of the effective stress and Poisson's ratio optimization problems. At the micro-level, the classical one-dimensional Euler-Bernoulli beam model extended with jump conditions at contact interfaces is used. The stress optimization problem is of a PDE-constrained optimization type, and the adjoint approach is exploited. Several numerical results are provided. In the second part a non-linear model for simulation of textiles is proposed. The yarns are modeled by hyperelastic law and have no bending stiffness. The friction is modeled by the Capstan equation. The model is formulated as a problem with the rate-independent dissipation, and the basic continuity and convexity properties are investigated. The part ends with numerical experiments and a comparison of the results to a real measurement.

- Combinations of Boolean Groebner Bases and SAT Solvers (2014)
- In this thesis, we combine Groebner basis with SAT Solver in different manners. Both SAT solvers and Groebner basis techniques have their own strength and weakness. Combining them could fix their weakness. The first combination is using Groebner techniques to learn additional binary clauses for SAT solver from a selection of clauses. This combination is first proposed by Zengler and Kuechlin. However, in our experiments, about 80 percent Groebner basis computations give no new binary clauses. By selecting smaller and more compact input for Groebner basis computations, we can significantly reduce the number of inefficient Groebner basis computations, learn much more binary clauses. In addition, the new strategy can reduce the solving time of a SAT Solver in general, especially for large and hard problems. The second combination is using all-solution SAT solver and interpolation to compute Boolean Groebner bases of Boolean elimination ideals of a given ideal. Computing Boolean Groebner basis of the given ideal is an inefficient method in case we want to eliminate most of the variables from a big system of Boolean polynomials. Therefore, we propose a more efficient approach to handle such cases. In this approach, the given ideal is translated to the CNF formula. Then an all-solution SAT Solver is used to find the projection of all solutions of the given ideal. Finally, an algorithm, e.g. Buchberger-Moeller Algorithm, is used to associate the reduced Groebner basis to the projection. We also optimize the Buchberger-Moeller Algorithm for lexicographical ordering and compare it with Brickenstein's interpolation algorithm. Finally, we combine Groebner basis and abstraction techniques to the verification of some digital designs that contain complicated data paths. For a given design, we construct an abstract model. Then, we reformulate it as a system of polynomials in the ring \({\mathbb Z}_{2^k}[x_1,\dots,x_n]\). The variables are ordered in a way such that the system has already been a Groebner basis w.r.t lexicographical monomial ordering. Finally, the normal form is employed to prove the desired properties. To evaluate our approach, we verify the global property of a multiplier and a FIR filter using the computer algebra system Singular. The result shows that our approach is much faster than the commercial verification tool from Onespin on these benchmarks.

- Multilevel Constructions (2014)
- The thesis consists of the two chapters. The first chapter is addressed to make a deep investigation of the MLMC method. In particular we take an optimisation view at the estimate. Rather than fixing the number of discretisation points \(n_i\) to be a geometric sequence, we are trying to find an optimal set up for \(n_i\) such that for a fixed error the estimate can be computed within a minimal time. In the second chapter we propose to enhance the MLMC estimate with the weak extrapolation technique. This technique helps to improve order of a weak convergence of a scheme and as a result reduce CC of an estimate. In particular we study high order weak extrapolation approach, which is know not be inefficient in the standard settings. However, a combination of the MLMC and the weak extrapolation yields an improvement of the MLMC.

- Intersection theory with applications to the computation of Gromov-Witten invariants (2014)
- This thesis is devoted to the computational aspects of intersection theory and enumerative geometry. The first results are a Sage package Schubert3 and a Singular library schubert.lib which both provide the key functionality necessary for computations in intersection theory and enumerative geometry. In particular, we describe an alternative method for computations in Schubert calculus via equivariant intersection theory. More concretely, we propose an explicit formula for computing the degree of Fano schemes of linear subspaces on hypersurfaces. As a special case, we also obtain an explicit formula for computing the number of linear subspaces on a general hypersurface when this number is finite. This leads to a much better performance than classical Schubert calculus. Another result of this thesis is related to the computation of Gromov-Witten invariants. The most powerful method for computing Gromov-Witten invariants is the localization of moduli spaces of stable maps. This method was introduced by Kontsevich in 1995. It allows us to compute Gromov-Witten invariants via Bott's formula. As an insightful application, we computed the numbers of rational curves on general complete intersection Calabi-Yau threefolds in projective spaces up to degree six. The results are all in agreement with predictions made from mirror symmetry.

- Portfoliooptimierung im Binomialmodell (2014)
- Die Dissertation "Portfoliooptimierung im Binomialmodell" befasst sich mit der Frage, inwieweit das Problem der optimalen Portfolioauswahl im Binomialmodell lösbar ist bzw. inwieweit die Ergebnisse auf das stetige Modell übertragbar sind. Dabei werden neben dem klassischen Modell ohne Kosten und ohne Veränderung der Marktsituation auch Modellerweiterungen untersucht.

- Zinsoptimiertes Schuldenmanagement (2014)
- Das zinsoptimierte Schuldenmanagement hat zum Ziel, eine möglichst effiziente Abwägung zwischen den erwarteten Finanzierungskosten einerseits und den Risiken für den Staatshaushalt andererseits zu finden. Um sich diesem Spannungsfeld zu nähern, schlagen wir erstmals die Brücke zwischen den Problemstellungen des Schuldenmanagements und den Methoden der zeitkontinuierlichen, dynamischen Portfoliooptimierung. Das Schlüsselelement ist dabei eine neue Metrik zur Messung der Finanzierungskosten, die Perpetualkosten. Diese spiegeln die durchschnittlichen zukünftigen Finanzierungskosten wider und beinhalten sowohl die bereits bekannten Zinszahlungen als auch die noch unbekannten Kosten für notwendige Anschlussfinanzierungen. Daher repräsentiert die Volatilität der Perpetualkosten auch das Risiko einer bestimmten Strategie; je langfristiger eine Finanzierung ist, desto kleiner ist die Schwankungsbreite der Perpetualkosten. Die Perpetualkosten ergeben sich als Produkt aus dem Barwert eines Schuldenportfolios und aus der vom Portfolio unabhängigen Perpetualrate. Für die Modellierung des Barwertes greifen wir auf das aus der dynamischen Portfoliooptimierung bekannte Konzept eines selbstfinanzierenden Bondportfolios zurück, das hier auf einem mehrdimensionalen affin-linearen Zinsmodell basiert. Das Wachstum des Schuldenportfolios wird dabei durch die Einbeziehung des Primärüberschusses des Staates gebremst bzw. verhindert, indem wir diesen als externen Zufluss in das selbstfinanzierende Modell aufnehmen. Wegen der Vielfältigkeit möglicher Finanzierungsinstrumente wählen wir nicht deren Wertanteile als Kontrollvariable, sondern kontrollieren die Sensitivitäten des Portfolios gegenüber verschiedenen Zinsbewegungen. Aus optimalen Sensitivitäten können in einem nachgelagerten Schritt dann optimale Wertanteile für verschiedenste Finanzierungsinstrumente abgeleitet werden. Beispielhaft demonstrieren wir dies mittels Rolling-Horizon-Bonds unterschiedlicher Laufzeit. Schließlich lösen wir zwei Optimierungsprobleme mit Methoden der stochastischen Kontrolltheorie. Dabei wird stets der erwartete Nutzen der Perpetualkosten maximiert. Die Nutzenfunktionen sind jeweils an das Schuldenmanagement angepasst und zeichnen sich insbesondere dadurch aus, dass höhere Kosten mit einem niedrigeren Nutzen einhergehen. Im ersten Problem betrachten wir eine Potenznutzenfunktion mit konstanter relativer Risikoaversion, im zweiten wählen wir eine Nutzenfunktion, welche die Einhaltung einer vorgegebenen Schulden- bzw. Kostenobergrenze garantiert.

- Variance Reduction Procedures for Market Risk Estimation (2014)
- Monte Carlo simulation is one of the commonly used methods for risk estimation on financial markets, especially for option portfolios, where any analytical approximation is usually too inaccurate. However, the usually high computational effort for complex portfolios with a large number of underlying assets motivates the application of variance reduction procedures. Variance reduction for estimating the probability of high portfolio losses has been extensively studied by Glasserman et al. A great variance reduction is achieved by applying an exponential twisting importance sampling algorithm together with stratification. The popular and much faster Delta-Gamma approximation replaces the portfolio loss function in order to guide the choice of the importance sampling density and it plays the role of the stratification variable. The main disadvantage of the proposed algorithm is that it is derived only in the case of Gaussian and some heavy-tailed changes in risk factors. Hence, our main goal is to keep the main advantage of the Monte Carlo simulation, namely its ability to perform a simulation under alternative assumptions on the distribution of the changes in risk factors, also in the variance reduction algorithms. Step by step, we construct new variance reduction techniques for estimating the probability of high portfolio losses. They are based on the idea of the Cross-Entropy importance sampling procedure. More precisely, the importance sampling density is chosen as the closest one to the optimal importance sampling density (zero variance estimator) out of some parametric family of densities with respect to Kullback - Leibler cross-entropy. Our algorithms are based on the special choices of the parametric family and can now use any approximation of the portfolio loss function. A special stratification is developed, so that any approximation of the portfolio loss function under any assumption of the distribution of the risk factors can be used. The constructed algorithms can easily be applied for any distribution of risk factors, no matter if light- or heavy-tailed. The numerical study exhibits a greater variance reduction than of the algorithm from Glasserman et al. The use of a better approximation may improve the performance of our algorithms significantly, as it is shown in the numerical study. The literature on the estimation of the popular market risk measures, namely VaR and CVaR, often refers to the algorithms for estimating the probability of high portfolio losses, describing the corresponding transition process only briefly. Hence, we give a consecutive discussion of this problem. Results necessary to construct confidence intervals for both measures under the mentioned variance reduction procedures are also given.

- Efficient Algorithms for Flow Simulation related to Nuclear Reactor Safety (2014)
- Safety analysis is of ultimate importance for operating Nuclear Power Plants (NPP). The overall modeling and simulation of physical and chemical processes occuring in the course of an accident is an interdisciplinary problem and has origins in fluid dynamics, numerical analysis, reactor tech- nology and computer programming. The aim of the study is therefore to create the foundations of a multi-dimensional non-isothermal fluid model for a NPP containment and software tool based on it. The numerical simulations allow to analyze and predict the behavior of NPP systems under different working and accident conditions, and to develop proper action plans for minimizing the risks of accidents, and/or minimizing the consequences of possible accidents. A very large number of scenarios have to be simulated, and at the same time acceptable accuracy for the critical param- eters, such as radioactive pollution, temperature, etc., have to be achieved. The existing software tools are either too slow, or not accurate enough. This thesis deals with developing customized al- gorithm and software tools for simulation of isothermal and non-isothermal flows in a containment pool of NPP. Requirements to such a software are formulated, and proper algorithms are presented. The goal of the work is to achieve a balance between accuracy and speed of calculation, and to develop customized algorithm for this special case. Different discretization and solution approaches are studied and those which correspond best to the formulated goal are selected, adjusted, and when possible, analysed. Fast directional splitting algorithm for Navier-Stokes equations in complicated geometries, in presence of solid and porous obstales, is in the core of the algorithm. Developing suitable pre-processor and customized domain decomposition algorithms are essential part of the overall algorithm amd software. Results from numerical simulations in test geometries and in real geometries are presented and discussed.

- Efficient algorithms for Asymmetric Flow Field Flow Fractionation (2014)
- This thesis is devoted to the modeling and simulation of Asymmetric Flow Field Flow Fractionation, which is a technique for separating particles of submicron scale. This process is a part of large family of Field Flow Fractionation techniques and has a very broad range of industrial applications, e. g. in microbiology, chemistry, pharmaceutics, environmental analysis. Mathematical modeling is crucial for this process, as due to the own nature of the process, lab ex- periments are difficult and expensive to perform. On the other hand, there are several challenges for the mathematical modeling: huge dominance (up to 106 times) of the flow over the diffusion, highly stretched geometry of the device. This work is devoted to developing fast and efficient algorithms, which take into the account the challenges, posed by the application, and provide reliable approximations for the quantities of interest. We present a new Multilevel Monte Carlo method for estimating the distribution functions on a compact interval, which are of the main interest for Asymmetric Flow Field Flow Fractionation. Error estimates for this method in terms of computational cost are also derived. We optimize the flow control at the Focusing stage under the given constraints on the flow and present an important ingredients for the further optimization, such as two-grid Reduced Basis method, specially adapted for the Finite Volume discretization approach.