## Fachbereich Mathematik

- Fibre Processes and their Applications (2013)
- The main purpose of the study was to improve the physical properties of the modelling of compressed materials, especially fibrous materials. Fibrous materials are finding increasing application in the industries. And most of the materials are compressed for different applications. For such situation, we are interested in how the fibre arranged, e.g. with which distribution. For given materials it is possible to obtain a three-dimensional image via micro computed tomography. Since some physical parameters, e.g. the fibre lengths or the directions for points in the fibre, can be checked under some other methods from image, it is beneficial to improve the physical properties by changing the parameters in the image. In this thesis, we present a new maximum-likelihood approach for the estimation of parameters of a parametric distribution on the unit sphere, which is various as some well known distributions, e.g. the von-Mises Fisher distribution or the Watson distribution, and for some models better fit. The consistency and asymptotic normality of the maximum-likelihood estimator are proven. As the second main part of this thesis, a general model of mixtures of these distributions on a hypersphere is discussed. We derive numerical approximations of the parameters in an Expectation Maximization setting. Furthermore we introduce a non-parametric estimation of the EM algorithm for the mixture model. Finally, we present some applications to the statistical analysis of fibre composites.

- Stochastic Optimization in Finance and Life Insurance: Applications of the Martingale Method (2008)
- This thesis is devoted to deal with the stochastic optimization problems in various situations with the aid of the Martingale method. Chapter 2 discusses the Martingale method and its applications to the basic optimization problems, which are well addressed in the literature (for example, [15], [23] and [24]). In Chapter 3, we study the problem of maximizing expected utility of real terminal wealth in the presence of an index bond. Chapter 4, which is a modification of the original research paper joint with Korn and Ewald [39], investigates an optimization problem faced by a DC pension fund manager under inflationary risk. Although the problem is addressed in the context of a pension fund, it presents a way of how to deal with the optimization problem, in the case there is a (positive) endowment. In Chapter 5, we turn to a situation where the additional income, other than the income from returns on investment, is gained by supplying labor. Chapter 6 concerns a situation where the market considered is incomplete. A trick of completing an incomplete market is presented there. The general theory which supports the discussion followed is summarized in the first chapter.

- Numerical Upscaling for Multiscale Flow Problems (2009)
- The thesis at hand deals with the numerical solution of multiscale problems arising in the modeling of processes in fluid and thermo dynamics. Many of these processes, governed by partial differential equations, are relevant in engineering, geoscience, and environmental studies. More precisely, this thesis discusses the efficient numerical computation of effective macroscopic thermal conductivity tensors of high-contrast composite materials. The term "high-contrast" refers to large variations in the conductivities of the constituents of the composite. Additionally, this thesis deals with the numerical solution of Brinkman's equations. This system of equations adequately models viscous flows in (highly) permeable media. It was introduced by Brinkman in 1947 to reduce the deviations between the measurements for flows in such media and the predictions according to Darcy's model.

- Algorithms for Symbolic Computation and their Applications - Standard Bases over Rings and Rank Tests in Statistics (2011)
- In the first part of the thesis we develop the theory of standard bases in free modules over (localized) polynomial rings. Given that linear equations are solvable in the coefficients of the polynomials, we introduce an algorithm to compute standard bases with respect to arbitrary (module) monomial orderings. Moreover, we take special care to principal ideal rings, allowing zero divisors. For these rings we design modified algorithms which are new and much faster than the general ones. These algorithms were motivated by current limitations in formal verification of microelectronic System-on-Chip designs. We show that our novel approach using computational algebra is able to overcome these limitations in important classes of applications coming from industrial challenges. The second part is based on research in collaboration with Jason Morton, Bernd Sturmfels and Anne Shiu. We devise a general method to describe and compute a certain class of rank tests motivated by statistics. The class of rank tests may loosely be described as being based on computing the number of linear extensions to given partial orders. In order to apply these tests to actual data we developed two algorithms and used our implementations to apply the methodology to gene expression data created at the Stowers Institute for Medical Research. The dataset is concerned with the development of the vertebra. Our rankings proved valuable to the biologists.

- Families of hypersurfaces with many prescribed singularities (2004)
- In this dissertation we consider complex, projective hypersurfaces with many isolated singularities. The leading questions concern the maximal number of prescribed singularities of such hypersurfaces in a given linear system, and geometric properties of the equisingular stratum. In the first part a systematic introduction to the theory of equianalytic families of hypersurfaces is given. Furthermore, the patchworking method for constructing hypersurfaces with singularities of prescribed types is described. In the second part we present new existence results for hypersurfaces with many singularities. Using the patchworking method, we show asymptotically proper results for hypersurfaces in P^n with singularities of corank less than two. In the case of simple singularities, the results are even asymptotically optimal. These statements improve all previous general existence results for hypersurfaces with these singularities. Moreover, the results are also transferred to hypersurfaces defined over the real numbers. The last part of the dissertation deals with the Castelnuovo function for studying the cohomology of ideal sheaves of zero-dimensional schemes. Parts of the theory of this function for schemes in P^2 are generalized to the case of schemes on general surfaces in P^3. As an application we show an H^1-vanishing theorem for such schemes.

- Some Large Deviation Results for Diffusion Processes (2004)
- In this text we survey some large deviation results for diffusion processes. The first chapters present results from the literature such as the Freidlin-Wentzell theorem for diffusions with small noise. We use these results to prove a new large deviation theorem about diffusion processes with strong drift. This is the main result of the thesis. In the later chapters we give another application of large deviation results, namely to determine the exponential decay rate for the Bayes risk when separating two different processes. The final chapter presents techniques which help to experiment with rare events for diffusion processes by means of computer simulations.

- Eine neue Wick Formel für Produkte von White Noise Distributionen und ihre Anwendung auf Feynman Pfadintegranden (2010)
- Die vorliegende Dissertation besteht aus zwei Hauptteilen: Neue Ergebnisse aus der Gaußchen Analysis und ihre Anwendung auf die Theorie der Pfadintegrale. Das zentrale Resultat des ersten Teils ist die Charakterisierung aller regulären Distributionen die man mit Donsker's Delta multiplizieren kann. Dabei wird eine explizite Formel für solche Produkte, die sogenannte Wick-Formel, angegeben. Im Anwendungsteil dieser Arbeit wird zunächst eine komplex skalierte Feynman-Kac-Formel und ihre zugehörigen Kerne mit Hilfe dieser Wick-Formel gezeigt. Desweiteren werden Feynman Integranden für neue Klassen von Potentialen als White Noise Distributionen konstruiert.

- Dynamic network optimization with application to the evacuation problem (2003)
- The thesis discusses discrete-time dynamic flows over a finite time horizon T. These flows take time, called travel time, to pass an arc of the network. Travel times, as well as other network attributes, such as, costs, arc and node capacities, and supply at the source node, can be constant or time-dependent. Here we review results on discrete-time dynamic flow problems (DTDNFP) with constant attributes and develop new algorithms to solve several DTDNFPs with time-dependent attributes. Several dynamic network flow problems are discussed: maximum dynamic flow, earliest arrival flow, and quickest flow problems. We generalize the hybrid capacity scaling and shortest augmenting path algorithmic of the static network flow problem to consider the time dependency of the network attributes. The result is used to solve the maximum dynamic flow problem with time-dependent travel times and capacities. We also develop a new algorithm to solve earliest arrival flow problems with the same assumptions on the network attributes. The possibility to wait (or park) at a node before departing on outgoing arc is also taken into account. We prove that the complexity of new algorithm is reduced when infinite waiting is considered. We also report the computational analysis of this algorithm. The results are then used to solve quickest flow problems. Additionally, we discuss time-dependent bicriteria shortest path problems. Here we generalize the classical shortest path problems in two ways. We consider two - in general contradicting - objective functions and introduce a time dependency of the cost which is caused by a travel time on each arc. These problems have several interesting practical applications, but have not attained much attention in the literature. Here we develop two new algorithms in which one of them requires weaker assumptions as in previous research on the subject. Numerical tests show the superiority of the new algorithms. We then apply dynamic network flow models and their associated solution algorithms to determine lower bounds of the evacuation time, evacuation routes, and maximum capacities of inhabited areas with respect to safety requirements. As a macroscopic approach, our dynamic network flow models are mainly used to produce good lower bounds for the evacuation time and do not consider any individual behavior during the emergency situation. These bounds can be used to analyze existing buildings or help in the design phase of planning a building.

- Anisotropic Smoothing and Image Restoration Facing Non-Gaussian Noise (2012)
- Image restoration and enhancement methods that respect important features such as edges play a fundamental role in digital image processing. In the last decades a large variety of methods have been proposed. Nevertheless, the correct restoration and preservation of, e.g., sharp corners, crossings or texture in images is still a challenge, in particular in the presence of severe distortions. Moreover, in the context of image denoising many methods are designed for the removal of additive Gaussian noise and their adaptation for other types of noise occurring in practice requires usually additional efforts. The aim of this thesis is to contribute to these topics and to develop and analyze new methods for restoring images corrupted by different types of noise: First, we present variational models and diffusion methods which are particularly well suited for the restoration of sharp corners and X junctions in images corrupted by strong additive Gaussian noise. For their deduction we present and analyze different tensor based methods for locally estimating orientations in images and show how to successfully incorporate the obtained information in the denoising process. The advantageous properties of the obtained methods are shown theoretically as well as by numerical experiments. Moreover, the potential of the proposed methods is demonstrated for applications beyond image denoising. Afterwards, we focus on variational methods for the restoration of images corrupted by Poisson and multiplicative Gamma noise. Here, different methods from the literature are compared and the surprising equivalence between a standard model for the removal of Poisson noise and a recently introduced approach for multiplicative Gamma noise is proven. Since this Poisson model has not been considered for multiplicative Gamma noise before, we investigate its properties further for more general regularizers including also nonlocal ones. Moreover, an efficient algorithm for solving the involved minimization problems is proposed, which can also handle an additional linear transformation of the data. The good performance of this algorithm is demonstrated experimentally and different examples with images corrupted by Poisson and multiplicative Gamma noise are presented. In the final part of this thesis new nonlocal filters for images corrupted by multiplicative noise are presented. These filters are deduced in a weighted maximum likelihood estimation framework and for the definition of the involved weights a new similarity measure for the comparison of data corrupted by multiplicative noise is applied. The advantageous properties of the new measure are demonstrated theoretically and by numerical examples. Besides, denoising results for images corrupted by multiplicative Gamma and Rayleigh noise show the very good performance of the new filters.