## Fachbereich Mathematik

### Filtern

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (199)
- Fraunhofer (ITWM) (2)

#### Erscheinungsjahr

#### Dokumenttyp

- Dissertation (199) (entfernen)

#### Schlagworte

- Fibre Processes and their Applications (2013)
- The main purpose of the study was to improve the physical properties of the modelling of compressed materials, especially fibrous materials. Fibrous materials are finding increasing application in the industries. And most of the materials are compressed for different applications. For such situation, we are interested in how the fibre arranged, e.g. with which distribution. For given materials it is possible to obtain a three-dimensional image via micro computed tomography. Since some physical parameters, e.g. the fibre lengths or the directions for points in the fibre, can be checked under some other methods from image, it is beneficial to improve the physical properties by changing the parameters in the image. In this thesis, we present a new maximum-likelihood approach for the estimation of parameters of a parametric distribution on the unit sphere, which is various as some well known distributions, e.g. the von-Mises Fisher distribution or the Watson distribution, and for some models better fit. The consistency and asymptotic normality of the maximum-likelihood estimator are proven. As the second main part of this thesis, a general model of mixtures of these distributions on a hypersphere is discussed. We derive numerical approximations of the parameters in an Expectation Maximization setting. Furthermore we introduce a non-parametric estimation of the EM algorithm for the mixture model. Finally, we present some applications to the statistical analysis of fibre composites.

- Stochastic Optimization in Finance and Life Insurance: Applications of the Martingale Method (2008)
- This thesis is devoted to deal with the stochastic optimization problems in various situations with the aid of the Martingale method. Chapter 2 discusses the Martingale method and its applications to the basic optimization problems, which are well addressed in the literature (for example, [15], [23] and [24]). In Chapter 3, we study the problem of maximizing expected utility of real terminal wealth in the presence of an index bond. Chapter 4, which is a modification of the original research paper joint with Korn and Ewald [39], investigates an optimization problem faced by a DC pension fund manager under inflationary risk. Although the problem is addressed in the context of a pension fund, it presents a way of how to deal with the optimization problem, in the case there is a (positive) endowment. In Chapter 5, we turn to a situation where the additional income, other than the income from returns on investment, is gained by supplying labor. Chapter 6 concerns a situation where the market considered is incomplete. A trick of completing an incomplete market is presented there. The general theory which supports the discussion followed is summarized in the first chapter.

- Numerical Upscaling for Multiscale Flow Problems (2009)
- The thesis at hand deals with the numerical solution of multiscale problems arising in the modeling of processes in fluid and thermo dynamics. Many of these processes, governed by partial differential equations, are relevant in engineering, geoscience, and environmental studies. More precisely, this thesis discusses the efficient numerical computation of effective macroscopic thermal conductivity tensors of high-contrast composite materials. The term "high-contrast" refers to large variations in the conductivities of the constituents of the composite. Additionally, this thesis deals with the numerical solution of Brinkman's equations. This system of equations adequately models viscous flows in (highly) permeable media. It was introduced by Brinkman in 1947 to reduce the deviations between the measurements for flows in such media and the predictions according to Darcy's model.

- Algorithms for Symbolic Computation and their Applications - Standard Bases over Rings and Rank Tests in Statistics (2011)
- In the first part of the thesis we develop the theory of standard bases in free modules over (localized) polynomial rings. Given that linear equations are solvable in the coefficients of the polynomials, we introduce an algorithm to compute standard bases with respect to arbitrary (module) monomial orderings. Moreover, we take special care to principal ideal rings, allowing zero divisors. For these rings we design modified algorithms which are new and much faster than the general ones. These algorithms were motivated by current limitations in formal verification of microelectronic System-on-Chip designs. We show that our novel approach using computational algebra is able to overcome these limitations in important classes of applications coming from industrial challenges. The second part is based on research in collaboration with Jason Morton, Bernd Sturmfels and Anne Shiu. We devise a general method to describe and compute a certain class of rank tests motivated by statistics. The class of rank tests may loosely be described as being based on computing the number of linear extensions to given partial orders. In order to apply these tests to actual data we developed two algorithms and used our implementations to apply the methodology to gene expression data created at the Stowers Institute for Medical Research. The dataset is concerned with the development of the vertebra. Our rankings proved valuable to the biologists.

- Families of hypersurfaces with many prescribed singularities (2004)
- In this dissertation we consider complex, projective hypersurfaces with many isolated singularities. The leading questions concern the maximal number of prescribed singularities of such hypersurfaces in a given linear system, and geometric properties of the equisingular stratum. In the first part a systematic introduction to the theory of equianalytic families of hypersurfaces is given. Furthermore, the patchworking method for constructing hypersurfaces with singularities of prescribed types is described. In the second part we present new existence results for hypersurfaces with many singularities. Using the patchworking method, we show asymptotically proper results for hypersurfaces in P^n with singularities of corank less than two. In the case of simple singularities, the results are even asymptotically optimal. These statements improve all previous general existence results for hypersurfaces with these singularities. Moreover, the results are also transferred to hypersurfaces defined over the real numbers. The last part of the dissertation deals with the Castelnuovo function for studying the cohomology of ideal sheaves of zero-dimensional schemes. Parts of the theory of this function for schemes in P^2 are generalized to the case of schemes on general surfaces in P^3. As an application we show an H^1-vanishing theorem for such schemes.

- Isogeometric Finite Element Analysis of Nonlinear Structural Vibrations (2015)
- In this thesis we present a new method for nonlinear frequency response analysis of mechanical vibrations. For an efficient spatial discretization of nonlinear partial differential equations of continuum mechanics we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of exact geometry representation and higher accuracy of numerical approximations using spline functions. For computing nonlinear frequency response to periodic external excitations, we rely on the well-established harmonic balance method. It expands the solution of the nonlinear ordinary differential equation system resulting from spatial discretization as a truncated Fourier series in the frequency domain. A fundamental aspect for enabling large-scale and industrial application of the method is model order reduction of the spatial discretization of the equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. We investigate the concept of modal derivatives theoretically and using computational examples we demonstrate the applicability and accuracy of the reduction method for nonlinear static computations and vibration analysis. Furthermore, we extend nonlinear vibration analysis to incompressible elasticity using isogeometric mixed finite element methods.

- Some Large Deviation Results for Diffusion Processes (2004)
- In this text we survey some large deviation results for diffusion processes. The first chapters present results from the literature such as the Freidlin-Wentzell theorem for diffusions with small noise. We use these results to prove a new large deviation theorem about diffusion processes with strong drift. This is the main result of the thesis. In the later chapters we give another application of large deviation results, namely to determine the exponential decay rate for the Bayes risk when separating two different processes. The final chapter presents techniques which help to experiment with rare events for diffusion processes by means of computer simulations.

- Eine neue Wick Formel für Produkte von White Noise Distributionen und ihre Anwendung auf Feynman Pfadintegranden (2010)
- Die vorliegende Dissertation besteht aus zwei Hauptteilen: Neue Ergebnisse aus der Gaußchen Analysis und ihre Anwendung auf die Theorie der Pfadintegrale. Das zentrale Resultat des ersten Teils ist die Charakterisierung aller regulären Distributionen die man mit Donsker's Delta multiplizieren kann. Dabei wird eine explizite Formel für solche Produkte, die sogenannte Wick-Formel, angegeben. Im Anwendungsteil dieser Arbeit wird zunächst eine komplex skalierte Feynman-Kac-Formel und ihre zugehörigen Kerne mit Hilfe dieser Wick-Formel gezeigt. Desweiteren werden Feynman Integranden für neue Klassen von Potentialen als White Noise Distributionen konstruiert.

- New aspects of optimal investment in continuous time (2014)
- This thesis focuses on dealing with some new aspects of continuous time portfolio optimization by using the stochastic control method. First, we extend the Busch-Korn-Seifried model for a large investor by using the Vasicek model for the short rate, and that problem is solved explicitly for two types of intensity functions. Next, we justify the existence of the constant proportion portfolio insurance (CPPI) strategy in a framework containing a stochastic short rate and a Markov switching parameter. The effect of Vasicek short rate on the CPPI strategy has been studied by Horsky (2012). This part of the thesis extends his research by including a Markov switching parameter, and the generalization is based on the B\"{a}uerle-Rieder investment problem. The explicit solutions are obtained for the portfolio problem without the Money Market Account as well as the portfolio problem with the Money Market Account. Finally, we apply the method used in Busch-Korn-Seifried investment problem to explicitly solve the portfolio optimization with a stochastic benchmark.