## Fachbereich Mathematik

### Refine

#### Faculty / Organisational entity

- Fachbereich Mathematik (188)
- Fraunhofer (ITWM) (2)

#### Year of publication

#### Document Type

- Doctoral Thesis (188) (remove)

#### Keywords

- Cauchy-Navier Wavelet Solvers and Their Application in Deformation Analysis (2003)
- The focus of this work has been to develop two families of wavelet solvers for the inner displacement boundary-value problem of elastostatics. Our methods are particularly suitable for the deformation analysis corresponding to geoscientifically relevant (regular) boundaries like sphere, ellipsoid or the actual Earth's surface. The first method, a spatial approach to wavelets on a regular (boundary) surface, is established for the classical (inner) displacement problem. Starting from the limit and jump relations of elastostatics we formulate scaling functions and wavelets within the framework of the Cauchy-Navier equation. Based on numerical integration rules a tree algorithm is constructed for fast wavelet computation. This method can be viewed as a first attempt to "short-wavelength modelling", i.e. high resolution of the fine structure of displacement fields. The second technique aims at a suitable wavelet approximation associated to Green's integral representation for the displacement boundary-value problem of elastostatics. The starting points are tensor product kernels defined on Cauchy-Navier vector fields. We come to scaling functions and a spectral approach to wavelets for the boundary-value problems of elastostatics associated to spherical boundaries. Again a tree algorithm which uses a numerical integration rule on bandlimited functions is established to reduce the computational effort. For numerical realization for both methods, multiscale deformation analysis is investigated for the geoscientifically relevant case of a spherical boundary using test examples. Finally, the applicability of our wavelet concepts is shown by considering the deformation analysis of a particular region of the Earth, viz. Nevada, using surface displacements provided by satellite observations. This represents the first step towards practical applications.

- Aspects of Optimal Capital Structure and Default Risk (2006)
- In this thesis, we have dealt with two modeling approaches of the credit risk, namely the structural (firm value) and the reduced form. In the former one, the firm value is modeled by a stochastic process and the first hitting time of this stochastic process to a given boundary defines the default time of the firm. In the existing literature, the stochastic process, triggering the firm value, has been generally chosen as a diffusion process. Therefore, on one hand it is possible to obtain closed form solutions for the pricing problems of credit derivatives and on the other hand the optimal capital structure of a firm can be analysed by obtaining closed form solutions of firm's corporate securities such as; equity value, debt value and total firm value, see Leland(1994). We have extended this approach by modeling the firm value as a jump-diffusion process. The choice of the jump-diffusion process was a crucial step to obtain closed form solutions for corporate securities. As a result, we have chosen a jump-diffusion process with double exponentially distributed jump heights, which enabled us to analyse the effects of jump on the optimal capital structure of a firm. In the second part of the thesis, by following the reduced form models, we have assumed that the default is triggered by the first jump of a Cox process. Further, by following Schönbucher(2005), we have modeled the forward default intensity of a firm as a geometric Brownian motion and derived pricing formulas for credit default swap options in a more general setup than the ones in Schönbucher(2005).

- On the distribution of eigenspaces in classical groups over finite rings and the Cohen-Lenstra heuristic (2014)
- In 2006 Jeffrey Achter proved that the distribution of divisor class groups of degree 0 of function fields with a fixed genus and the distribution of eigenspaces in symplectic similitude groups are closely related to each other. Gunter Malle proposed that there should be a similar correspondence between the distribution of class groups of number fields and the distribution of eigenspaces in ceratin matrix groups. Motivated by these results and suggestions we study the distribution of eigenspaces corresponding to the eigenvalue one in some special subgroups of the general linear group over factor rings of rings of integers of number fields and derive some conjectural statements about the distribution of \(p\)-parts of class groups of number fields over a base field \(K_{0}\). Where our main interest lies in the case that \(K_{0}\) contains the \(p\)th roots of unity, because in this situation the \(p\)-parts of class groups seem to behave in an other way like predicted by the popular conjectures of Henri Cohen and Jacques Martinet. In 2010 based on computational data Malle has succeeded in formulating a conjecture in the spirit of Cohen and Martinet for this case. Here using our investigations about the distribution in matrixgroups we generalize the conjecture of Malle to a more abstract level and establish a theoretical backup for these statements.

- Numerical Algorithms in Algebraic Geometry with Implementation in Computer Algebra System SINGULAR (2011)
- Polynomial systems arise in many applications: robotics, kinematics, chemical kinetics, computer vision, truss design, geometric modeling, and many others. Many polynomial systems have solutions sets, called algebraic varieties, having several irreducible components. A fundamental problem of the numerical algebraic geometry is to decompose such an algebraic variety into its irreducible components. The witness point sets are the natural numerical data structure to encode irreducible algebraic varieties. Sommese, Verschelde and Wampler represented the irreducible algebraic decomposition of an affine algebraic variety \(X\) as a union of finite disjoint sets \(\cup_{i=0}^{d}W_i=\cup_{i=0}^{d}\left(\cup_{j=1}^{d_i}W_{ij}\right)\) called numerical irreducible decomposition. The \(W_i\) correspond to the pure i-dimensional components, and the \(W_{ij}\) represent the i-dimensional irreducible components. The numerical irreducible decomposition is implemented in BERTINI. We modify this concept using partially Gröbner bases, triangular sets, local dimension, and the so-called zero sum relation. We present in the second chapter the corresponding algorithms and their implementations in SINGULAR. We give some examples and timings, which show that the modified algorithms are more efficient if the number of variables is not too large. For a large number of variables BERTINI is more efficient. Leykin presented an algorithm to compute the embedded components of an algebraic variety based on the concept of the deflation of an algebraic variety. Depending on the modified algorithm mentioned above, we will present in the third chapter an algorithm and its implementation in SINGULAR to compute the embedded components. The irreducible decomposition of algebraic varieties allows us to formulate in the fourth chapter some numerical algebraic algorithms. In the last chapter we present two SINGULAR libraries. The first library is used to compute the numerical irreducible decomposition and the embedded components of an algebraic variety. The second library contains the procedures of the algorithms in the last Chapter to test inclusion, equality of two algebraic varieties, to compute the degree of a pure i-dimensional component, and the local dimension.

- Tropical intersection theory (2010)
- This thesis consists of five chapters: Chapter 1 contains the basics of the theory and is essential for the rest of the thesis. Chapters 2-5 are to a large extent independent of each other and can be read separately. - Chapter 1: Foundations of tropical intersection theory In this first chapter we set up the foundations of a tropical intersection theory covering many concepts and tools of its counterpart in algebraic geometry such as affine tropical cycles, Cartier divisors, morphisms of tropical cycles, pull-backs of Cartier divisors, push-forwards of cycles and an intersection product of Cartier divisors and cycles. Afterwards, we generalize these concepts to abstract tropical cycles and introduce a concept of rational equivalence. Finally, we set up an intersection product of cycles and prove that every cycle is rationally equivalent to some affine cycle in the special case that our ambient cycle is R^n. We use this result to show that rational and numerical equivalence agree in this case and prove a tropical Bézout's theorem. - Chapter 2: Tropical cycles with real slopes and numerical equivalence In this chapter we generalize our definitions of tropical cycles to polyhedral complexes with non-rational slopes. We use this new definition to show that if our ambient cycle is a fan then every subcycle is numerically equivalent to some affine cycle. Finally, we restrict ourselves to cycles in R^n that are "generic" in some sense and study the concept of numerical equivalence in more detail. - Chapter 3: Tropical intersection products on smooth varieties We define an intersection product of tropical cycles on tropical linear spaces L^n_k and on other, related fans. Then, we use this result to obtain an intersection product of cycles on any "smooth" tropical variety. Finally, we use the intersection product to introduce a concept of pull-backs of cycles along morphisms of smooth tropical varieties and prove that this pull-back has all expected properties. - Chapter 4: Weil and Cartier divisors under tropical modifications First, we introduce "modifications" and "contractions" and study their basic properties. After that, we prove that under some further assumptions a one-to-one correspondence of Weil and Cartier divisors is preserved by modifications. In particular we can prove that on any smooth tropical variety we have a one-to-one correspondence of Weil and Cartier divisors. - Chapter 5: Chern classes of tropical vector bundles We give definitions of tropical vector bundles and rational sections of tropical vector bundles. We use these rational sections to define the Chern classes of such a tropical vector bundle. Moreover, we prove that these Chern classes have all expected properties. Finally, we classify all tropical vector bundles on an elliptic curve up to isomorphisms.

- 3D Morphological Analysis and Modeling of Random Fiber Networks (2011)
- The various uses of fiber-reinforced composites, for example in the enclosures of planes, boats and cars, generates the demand for a detailed analysis of these materials. The final goal is to optimize fibrous materials by the means of “virtual material design”. New fibrous materials are virtually created as realizations of a stochastic model and evaluated with physical simulations. In that way, materials can be optimized for specific use cases, without constructing expensive prototypes or performing mechanical experiments. In order to design a practically fabricable material, the stochastic model is first adapted to an existing material and then slightly modified. The virtual reconstruction of the existing material requires a precise knowledge of the geometry of its microstructure. The first part of this thesis describes a fiber quantification method by the means of local measurements of the fiber radius and orientation. The combination of a sparse chord length transform and inertia moments leads to an efficient and precise new algorithm. It outperforms existing approaches with the possibility to treat different fiber radii within one sample, with high precision in continuous space and comparably fast computing time. This local quantification method can be directly applied on gray value images by adapting the directional distance transforms on gray values. In this work, several approaches of this kind are developed and evaluated. Further characterization of the fiber system requires a segmentation of each single fiber. Using basic morphological operators with specific structuring elements, it is possible to derive a probability for each pixel describing if the pixel belongs to a fiber core in a region without overlapping fibers. Tracking high probabilities leads to a partly reconstruction of the fiber cores in non crossing regions. These core parts are then reconnected over critical regions, if they fulfill certain conditions ensuring the affiliation to the same fiber. In the second part of this work, we develop a new stochastic model for dense systems of non overlapping fibers with a controllable level of bending. Existing approaches in the literature have at least one weakness in either achieving high volume fractions, producing non overlapping fibers, or controlling the bending or the orientation distribution. This gap can be bridged by our stochastic model, which operates in two steps. Firstly, a random walk with the multivariate von Mises-Fisher orientation distribution defines bent fibers. Secondly, a force-biased packing approach arranges them in a non overlapping configuration. Furthermore, we provide the estimation of all parameters needed for the fitting of this model to a real microstructure. Finally, we simulate the macroscopic behavior of different microstructures to derive their mechanical and thermal properties. This part is mostly supported by existing software and serves as a summary of physical simulation applied to random fiber systems. The application on a glass fiber reinforced polymer proves the quality of the reconstruction by our stochastic model, as the effective properties match for both the real microstructure and the realizations of the fitted model. This thesis includes all steps to successfully perform virtual material design on various data sets. With novel and efficient algorithms it contributes to the science of analysis and modeling of fiber reinforced materials.

- The Application of Reproducing Kernel Based Spline Approximation to Seismic Surface and Body Wave Tomography: Theoretical Aspects and Numerical Results (2007)
- The main aim of this work was to obtain an approximate solution of the seismic traveltime tomography problems with the help of splines based on reproducing kernel Sobolev spaces. In order to be able to apply the spline approximation concept to surface wave as well as to body wave tomography problems, the spherical spline approximation concept was extended for the case where the domain of the function to be approximated is an arbitrary compact set in R^n and a finite number of discontinuity points is allowed. We present applications of such spline method to seismic surface wave as well as body wave tomography, and discuss the theoretical and numerical aspects of such applications. Moreover, we run numerous numerical tests that justify the theoretical considerations.

- Risk Analysis of financial time series using neural networks (2005)
- An autoregressive-ARCH model with possible exogeneous variables is treated. We estimate the conditional volatility of the model by applying feedforward networks to the residuals and prove consistency and asymptotic normality for the estimates under the rate of feedforward networks complexity. Recurrent neural networks estimates of GARCH and value-at-risk is studied. We prove consistency and asymptotic normality for the recurrent neural networks ARMA estimator under the rate of recurrent networks complexity. We also overcome the estimation problem in stochastic variance models in discrete time by feedforward networks and the introduction of a new distributions on the innovations. We use the method to calculate market risk such as expected shortfall and Value-at risk. We tested this distribution together with other new distributions on the GARCH family models against other common distributions on the financial market such as Normal Inverse Gaussian, normal and the Student's t- distributions. As an application of the models, some German stocks are studied and the different approaches are compared together with the most common method of GARCH(1,1) fit.

- Topological Methods for the Representation and Analysis of Exploration Data in Oil Industry (2010)
- The purpose of Exploration in Oil Industry is to "discover" an oil-containing geological formation from exploration data. In the context of this PhD project this oil-containing geological formation plays the role of a geometrical object, which may have any shape. The exploration data may be viewed as a "cloud of points", that is a finite set of points, related to the geological formation surveyed in the exploration experiment. Extensions of topological methodologies, such as homology, to point clouds are helpful in studying them qualitatively and capable of resolving the underlying structure of a data set. Estimation of topological invariants of the data space is a good basis for asserting the global features of the simplicial model of the data. For instance the basic statistical idea, clustering, are correspond to dimension of the zero homology group of the data. A statistics of Betti numbers can provide us with another connectivity information. In this work represented a method for topological feature analysis of exploration data on the base of so called persistent homology. Loosely, this is the homology of a growing space that captures the lifetimes of topological attributes in a multiset of intervals called a barcode. Constructions from algebraic topology empowers to transform the data, to distillate it into some persistent features, and to understand then how it is organized on a large scale or at least to obtain a low-dimensional information which can point to areas of interest. The algorithm for computing of the persistent Betti numbers via barcode is realized in the computer algebra system "Singular" in the scope of the work.

- Some Steps towards Experimental Design for Neural Network Regression (2011)
- We discuss some first steps towards experimental design for neural network regression which, at present, is too complex to treat fully in general. We encounter two difficulties: the nonlinearity of the models together with the high parameter dimension on one hand, and the common misspecification of the models on the other hand. Regarding the first problem, we restrict our consideration to neural networks with only one and two neurons in the hidden layer and a univariate input variable. We prove some results regarding locally D-optimal designs, and present a numerical study using the concept of maximin optimal designs. In respect of the second problem, we have a look at the effects of misspecification on optimal experimental designs.