## Fachbereich Mathematik

### Refine

#### Year of publication

#### Document Type

- Article (26) (remove)

#### Keywords

- Hysteresis (2)
- mathematical modeling (2)
- nonlinear diffusion (2)
- Anisotropic smoothness classes (1)
- Banach lattice (1)
- CAQ (1)
- Fatigue (1)
- Hardy space (1)
- Kalkül (1)
- Kalkül des natürlichen Schließens (1)

- A Mathematical Model for Diffusion and Exchange Phenomena in Ultra Napkins (1992)
- The performance of napkins is nowadays improved substantially by embedding granules of a superabsorbent into the cellulose matrix. In this paper a continuous model for the liquid transport in such an Ultra Napkin is proposed. Its mean feature is a nonlinear diffusion equation strongly coupled with an ODE describing a reversible absorbtion process. An efficient numerical method based on a symmetrical time splitting and a finite difference scheme of ADI-predictor-corrector type has been developed to solve these equations in a three dimensional setting. Numerical results are presented that can be used to optimize the granule distribution.

- A Model for the Cloudiness of Fabrics (1995)
- Cloudy inhomogenities in artificial fabrics are graded by a fast method which is based on a Laplacian pyramid decomposition of the fabric image. This band-pass representation takes into account the scale character of the cloudiness. A quality measure of the entire cloudiness is obtained as a weighted mean over the variances of all scales.

- A short note on functions of bounded semivariation and countably additive vector measures (1999)
- In the scalar case one knows that a complex normalized function of boundedvariation \(\phi\) on \([0,1]\) defines a unique complex regular Borel measure\(\mu\) on \([0,1]\). In this note we show that this is no longer true in generalin the vector valued case, even if \(\phi\) is assumed to be continuous. Moreover, the functions \(\phi\) which determine a countably additive vectormeasure \(\mu\) are characterized.

- Aussagenlogische Kalküle der zweiwertigen Logik (2000)
- Ein Teilaspekt der formalen Logik besteht in der Untersuchung wie die logischen Konsequenzen (insbesondere die Tautologien) einer vorgegebenen Formelmenge unter Verwendung gewisser Reglements schrittweise hergeleitet werden können. Hierbei ist die Logik bestimmt durch eine konsequente Trennung von Syntax und Semantik. Diese Abhandlung stellt exemplarisch das Tableau-Kalkül und das Kalkül des natürlichen Schließens vor.

- Characterization of operators of positive scalar type (1999)
- Let \(X\) be a Banach lattice. Necessary and sufficient conditions for a linear operator \(A:D(A) \to X\), \(D(A)\subseteq X\), to be of positive \(C^0\)-scalar type are given. In addition, the question is discussed which conditions on the Banach lattice imply that every operator of positive \(C^0\)-scalar type is necessarily of positive scalar type.

- Complexity and Approximability of the Maximum Flow Problem with Minimum Quantities (2012)
- We consider the maximum flow problem with minimum quantities (MFPMQ), which is a variant of the maximum flow problem where the flow on each arc in the network is restricted to be either zero or above a given lower bound (a minimum quantity), which may depend on the arc. This problem has recently been shown to be weakly NP-complete even on series-parallel graphs. In this paper, we provide further complexity and approximability results for MFPMQ and several special cases. We first show that it is strongly NP-hard to approximate MFPMQ on general graphs (and even bipartite graphs) within any positive factor. On series-parallel graphs, however, we present a pseudo-polynomial time dynamic programming algorithm for the problem. We then study the case that the minimum quantity is the same for each arc in the network and show that, under this restriction, the problem is still weakly NP-complete on general graphs, but can be solved in strongly polynomial time on series-parallel graphs. On general graphs, we present a \((2 - 1/\lambda) \)-approximation algorithm for this case, where \(\lambda\) denotes the common minimum quantity of all arcs.

- Eine transfinite Zahl als Grenzwert (2010)
- Wir zeigen, dass Aleph-Null diejenige transfinite Kardinalzahl ist, gegen die alle Zahlenfolgen streben, die (nach gängiger Definition) gegen (positiv) unendlich streben, und beleuchten dessen Konsequenzen. Diese beinhalten u.a., dass die Exponentialfunktion im Unendlichen unstetig ist.

- Fatigue Lifetime Estimation Based on Rainflow Counted Data Using the Local Strain Approach (1995)
- In the automotive industry both the loca l strain approach and rainflow counting are well known and approved tools in the numerical estimation of the lifetime of a new developed part especially in the automotive industry. This paper is devoted to the combination of both tools and a new algorithm is given that takes advantage of the inner structure of the most used damage parameters.

- Homogeneous Penalizers and Constraints in Convex Image Restoration (2012)
- Recently convex optimization models were successfully applied for solving various problems in image analysis and restoration. In this paper, we are interested in relations between convex constrained optimization problems of the form \({\rm argmin} \{ \Phi(x)\) subject to \(\Psi(x) \le \tau \}\) and their penalized counterparts \({\rm argmin} \{\Phi(x) + \lambda \Psi(x)\}\). We recall general results on the topic by the help of an epigraphical projection. Then we deal with the special setting \(\Psi := \| L \cdot\|\) with \(L \in \mathbb{R}^{m,n}\) and \(\Phi := \varphi(H \cdot)\), where \(H \in \mathbb{R}^{n,n}\) and \(\varphi: \mathbb R^n \rightarrow \mathbb{R} \cup \{+\infty\} \) meet certain requirements which are often fulfilled in image processing models. In this case we prove by incorporating the dual problems that there exists a bijective function such that the solutions of the constrained problem coincide with those of the penalized problem if and only if \(\tau\) and \(\lambda\) are in the graph of this function. We illustrate the relation between \(\tau\) and \(\lambda\) for various problems arising in image processing. In particular, we point out the relation to the Pareto frontier for joint sparsity problems. We demonstrate the performance of the constrained model in restoration tasks of images corrupted by Poisson noise with the \(I\)-divergence as data fitting term \(\varphi\) and in inpainting models with the constrained nuclear norm. Such models can be useful if we have a priori knowledge on the image rather than on the noise level.