## Fachbereich Mathematik

- A short note on functions of bounded semivariation and countably additive vector measures (1999)
- In the scalar case one knows that a complex normalized function of boundedvariation \(\phi\) on \([0,1]\) defines a unique complex regular Borel measure\(\mu\) on \([0,1]\). In this note we show that this is no longer true in generalin the vector valued case, even if \(\phi\) is assumed to be continuous. Moreover, the functions \(\phi\) which determine a countably additive vectormeasure \(\mu\) are characterized.

- Two equivalent norms for vector-valued holomorphic functions (1999)
- The following two norms for holomorphic functions \(F\), defined on the right complex half-plane \(\{z \in C:\Re(z)\gt 0\}\) with values in a Banach space \(X\), are equivalent: \[\begin{eqnarray*} \lVert F \rVert _{H_p(C_+)} &=& \sup_{a\gt0}\left( \int_{-\infty}^\infty \lVert F(a+ib) \rVert ^p \ db \right)^{1/p} \mbox{, and} \\ \lVert F \rVert_{H_p(\Sigma_{\pi/2})} &=& \sup_{\lvert \theta \lvert \lt \pi/2}\left( \int_0^\infty \left \lVert F(re^{i \theta}) \right \rVert ^p\ dr \right)^{1/p}.\end{eqnarray*}\] As a consequence, we derive a description of boundary values ofsectorial holomorphic functions, and a theorem of Paley-Wiener typefor sectorial holomorphic functions.

- Characterization of operators of positive scalar type (1999)
- Let \(X\) be a Banach lattice. Necessary and sufficient conditions for a linear operator \(A:D(A) \to X\), \(D(A)\subseteq X\), to be of positive \(C^0\)-scalar type are given. In addition, the question is discussed which conditions on the Banach lattice imply that every operator of positive \(C^0\)-scalar type is necessarily of positive scalar type.