## Fachbereich Mathematik

### Filtern

#### Schlagworte

- Location Theory (6)
- Algebraic Optimization (2)
- Geometrical Algorithms (2)
- Multicriteria Optimization (2)
- Algebraic optimization (1)
- Analysis (1)
- Applications (1)
- Approximation (1)
- Bisector (1)
- Convex Analysis (1)

- Geometric Methods to Solve Max-Ordering Location Problems (1999)
- Location problems with Q (in general conflicting) criteria are considered. After reviewing previous results of the authors dealing with lexicographic and Pareto location the main focus of the paper is on max-ordering locations. In these location problems the worst of the single objectives is minimized. After discussing some general results (including reductions to single criterion problems and the relation to lexicographic and Pareto locations) three solution techniques are introduced and exemplified using one location problem class, each: The direct approach, the decision space approach and the objective space approach. In the resulting solution algorithms emphasis is on the representation of the underlying geometric idea without fully exploring the computational complexity issue. A further specialization of max-ordering locations is obtained by introducing lexicographic max-ordering locations, which can be found efficiently. The paper is concluded by some ideas about future research topics related to max-ordering location problems.

- On the number of Criteria Needed to Decide Pareto Optimality (1999)
- In this paper we prove a reduction result for the number of criteria in convex multiobjective optimization. This result states that to decide wheter a point x in the decision space is pareto optimal it suffices to consider at most n? criteria at a time, where n is the dimension of the decision space. The main theorem is based on a geometric characterization of pareto, strict pareto and weak pareto solutions

- On the Number of Criteria Needed to Decide Pareto Optimality (2000)
- In this paper we address the question of how many objective functions are needed to decide whether a given point is a Pareto optimal solution for a multicriteria optimization problem. We extend earlier results showing that the set of weakly Pareto optimal points is the union of Pareto optimal sets of subproblems and show their limitations. We prove that for strictly quasi-convex problems in two variables Pareto optimality can be decided by consideration of at most three objectives at a time. Our results are based on a geometric characterization of Pareto, strict Pareto and weak Pareto solutions and Helly's Theorem. We also show that a generalization to quasi-convex objectives is not possible, and state a weaker result for this case. Furthermore, we show that a generalization to strictly Pareto optimal solutions is impossible, even in the convex case.

- Polyhedral Properties of the Uncapacitated Multiple Allocation Hub Location Problem (2000)
- We examine the feasibility polyhedron of the uncapacitated hub location problem (UHL) with multiple allocation, which has applications in the fields of air passenger and cargo transportation, telecommunication and postal delivery services. In particular we determine the dimension and derive some classes of facets of this polyhedron. We develop some general rules about lifting facets from the uncapacitated facility location (UFL) for UHL and projecting facets from UHL to UFL. By applying these rules we get a new class of facets for UHL which dominates the inequalities in the original formulation. Thus we get a new formulation of UHL whose constraints are all facet defining. We show its superior computational performance by benchmarking it on a well known data set.

- Multicriteria network location problems with sumb objectives (1999)
- In this paper network location problems with several objectives are discussed, where every single objective is a classical median objective function. We will lock at the problem of finding Pareto optimal locations and lexicographically optimal locations. It is shown that for Pareto optimal locations in undirected networks no node dominance result can be shown. Structural results as well as efficient algorithms for these multi-criteria problems are developed. In the special case of a tree network a generalization of Goldman's dominance algorithm for finding Pareto locations is presented.

- Classification of Location Problems (1999)
- There are several good reasons to introduce classification schemes for optimization problems including, for instance, the ability for concise problem statement opposed to verbal, often ambiguous, descriptions or simple data encoding and information retrieval in bibliographical information systems or software libraries. In some branches like scheduling and queuing theory classification is therefore a widely accepted and appreciated tool. The aim of this paper is to propose a 5-position classification which can be used to cover all location problems. We will provide a list of currentliy available symbols and indicate its usefulness in a - necessarily non-comprehensive - list of classical location problems. The classification scheme is in use since 1992 and has since proved to be useful in research, software development, classroom, and for overview articles.

- On Bisectors for Different Distance Functions (1999)
- Let rC and rD be two convexdistance funtions in the plane with convex unit balls C and D. Given two points, p and q, we investigate the bisector, B(p,q), of p and q, where distance from p is measured by rC and distance from q by rD. We provide the following results. B(p,q) may consist of many connected components whose precise number can be derived from the intersection of the unit balls, C nd D. The bisector can contain bounded or unbounded 2-dimensional areas. Even more surprising, pieces of the bisector may appear inside the region of all points closer to p than to q. If C and D are convex polygons over m and m vertices, respectively, the bisector B(p,q) can consist of at most min(m,n) connected components which contain at most 2(m+n) vertices altogether. The former bound is tight, the latter is tight up to an additive constant. We also present an optimal O(m+n) time algorithm for computing the bisector.

- Convex Analysis (1998)
- Preface Convex analysis is one of the mathematical tools which is used both explicitly and indirectly in many mathematical disciplines. However, there are not so many courses which have convex analysis as the main topic. More often, parts of convex analysis are taught in courses like linear or nonlinear optimization, probability theory, geometry, location theory, etc.. This manuscript gives a systematic introduction to the concepts of convex analysis. A focus is set to the geometrical interpretation of convex analysis. This focus was one of the reasons why I have decided to restrict myself to the finite dimensional case. Another reason for this restriction is that in the infinite dimensional case many proofs become more difficult and more technical. Therefore, it would not have been possible (for me) to cover all the topics I wanted to discuss in this introductory text in the infinite dimensional case, too. Anyway, I am convinced that even for someone who is interested in the infinite dimensional case this manuscript will be a good starting point. When I offered a course in convex analysis in the Wintersemester 1997/1998 (upon which this manuscript is based) a lot of students asked me how this course fits in their own studies. Because this manuscript will (hopefully) be used by some students in the future, I will give here some of the possible statements to answer this very question. - Convex analysis can be seen as an extension of classical analysis, in which still we get many of the results, like a mean-value theorem, with less assumptions on the smoothness of the function. - Convex analysis can be seen as a foundation of linear and nonlinear optimization which provides many tools to handle concepts in optimization much easier (for example the Lemma of Farkas). - Finally, convex analysis can be seen as a link between abstract geometry and very algorithmic oriented computational geometry. As already explained before, this manuscript is based on a one semester course and therefore cannot cover all topics and discuss all aspects of convex analysis in detail. To guide the interested reader I have included a list of nice books about this subject at the end of the manuscript. It should be noted that the philosophy of this course follows [3], [4] and THE BOOK of modern convex analysis [6]. The geometrical emphasis however, is also related to intentions of [1].^L

- Robust facility location (1998)
- Let A be a nonempty finite subset of R^2 representing the geographical coordinates of a set of demand points (towns, ...), to be served by a facility, whose location within a given region S is sought. Assuming that the unit cost for a in A if the facility is located at x in S is proportional to dist(x,a) - the distance from x to a - and that demand of point a is given by w_a, minimizing the total trnsportation cost TC(w,x) amounts to solving the Weber problem. In practice, it may be the case, however, that the demand vector w is not known, and only an estimator {hat w} can be provided. Moreover the errors in sich estimation process may be non-negligible. We propose a new model for this situation: select a threshold valus B 0 representing the highest admissible transportation cost. Define the robustness p of a location x as the minimum increase in demand needed to become inadmissible, i.e. p(x) = min{||w^*-{hat w}|| : TC(w^*,x) B, w^* = 0} and solve then the optimization problem max_{x in S} p(x) to get the most robust location.

- Weber s Problem with attraction and repulsion under Polyhedral Gauges (1999)
- Given a finite set of points in the plane and a forbidden region R, we want to find a point X not an element of int(R), such that the weighted sum to all given points is minimized. This location problem is a variant of the well-known Weber Problem, where we measure the distance by polyhedral gauges and allow each of the weights to be positive or negative. The unit ball of a polyhedral gauge may be any convex polyhedron containing the origin. This large class of distance functions allows very general (practical) settings - such as asymmetry - to be modeled. Each given point is allowed to have its own gauge and the forbidden region R enables us to include negative information in the model. Additionally the use of negative and positive weights allows to include the level of attraction or dislikeness of a new facility. Polynomial algorithms and structural properties for this global optimization problem (d.c. objective function and a non-convex feasible set) based on combinatorial and geometrical methods are presented.