## Fachbereich Mathematik

### Refine

#### Year of publication

#### Keywords

- Mathematikunterricht (3)
- Modellierung (3)
- Standortplanung (3)
- praxisorientiert (3)
- Combinatorial Optimization (2)
- Multicriteria optimization (2)
- Multiobjective programming (2)
- modelling (2)
- praxis orientated (2)
- Approximation Algorithms (1)

- A Characterization of Lexicographic Max-Ordering Solutions (1999)
- In this paper we give the definition of a solution concept in multicriteria combinatorial optimization. We show how Pareto, max-ordering and lexicographically optimal solutions can be incorporated in this framework. Furthermore we state some properties of lexicographic max-ordering solutions, which combine features of these three kinds of optimal solutions. Two of these properties, which are desirable from a decision maker" s point of view, are satisfied if and only of the solution concept is that of lexicographic max-ordering.

- A Fuzzy Programming Approach to Multicriteria Facility Location Problems (1999)
- Facility Location Problems are concerned with the optimal location of one or several new facilities, with respect to a set of existing ones. The objectives involve the distance between new and existing facilities, usually a weighted sum or weighted maximum. Since the various stakeholders (decision makers) will have different opinions of the importance of the existing facilities, a multicriteria problem with several sets of weights, and thus several objectives, arises. In our approach, we assume the decision makers to make only fuzzy comparisons of the different existing facilities. A geometric mean method is used to obtain the fuzzy weights for each facility and each decision maker. The resulting multicriteria facility location problem is solved using fuzzy techniques again. We prove that the final compromise solution is weakly Pareto optimal and Pareto optimal, if it is unique, or under certain assumptions on the estimates of the Nadir point. A numerical example is considered to illustrate the methodology.

- A Level Set Method for Multiobjective Combinatorial Optimization: Application to the Quadratic Assignment Problem (2002)
- Multiobjective combinatorial optimization problems have received increasing attention in recent years. Nevertheless, many algorithms are still restricted to the bicriteria case. In this paper we propose a new algorithm for computing all Pareto optimal solutions. Our algorithm is based on the notion of level sets and level curves and contains as a subproblem the determination of K best solutions for a single objective combinatorial optimization problem. We apply the method to the Multiobjective Quadratic Assignment Problem (MOQAP). We present two algorithms for ranking QAP solutions and nally give computational results comparing the methods.

- An Annotated Bibliography of Multiobjective Combinatorial Optimization (2000)
- This paper provides an annotated bibliography of multiple objective combinatorial optimization, MOCO. We present a general formulation of MOCO problems, describe the main characteristics of MOCO problems, and review the main properties and theoretical results for these problems. One section is devoted to a brief description of the available solution methodology, both exact and heuristic. The main part of the paper is devoted to an annotation of the existing literature in the field organized problem by problem. We conclude the paper by stating open questions and areas of future research. The list of references comprises more than 350 entries.

- An Improved Epsilon-Constraint Method for Multiobjective Programming (2005)
- In this paper we revisit one of the most important scalarization techniques used in multiobjective programming, the \(\varepsilon\)-constraint method.

- Approximation Algorithms for Combinatorial Multicriteria Optimization Problems (1999)
- The computational complexity of combinatorial multiple objective programming problems is investigated. NP-completeness and #P-completeness results are presented. Using two definitions of approximability, general results are presented, which outline limits for approximation algorithms. The performance of the well known tree and Christofides' heuristics for the TSP is investigated in the multicriteria case with respect to the two definitions of approximability.

- Bicriteria cost versus service analysis of the distribution network of a chemical company (1998)
- In order to improve the distribution system for the Nordic countries the BASF AG considered 13 alternative scenarios to the existing system. These involved the construction of warehouses at various locations. For every scenario the transportation, storage, and handling cost incurred was to be as low as possible, where restrictions on the delivery time were given. The scenarios were evaluated according to (minimal) total cost and weighted average delivery time. The results led to a restriction to only three cases, involving only one new warehouse each. For these a more accurate model for the cost was developped and evaluated, yielding results similar to a simple linear model. Since there were no clear preferences between cost and delivery time, the final decision was chosen to represent a compromise between the two criteria.

- Convex Operators in Vector Optimization: Directional Derivatives and the Cone of Decrease Directions (1999)
- The paper is devoted to the investigation of directional derivatives and the cone of decrease directions for convex operators on Banach spaces. We prove a condition for the existence of directional derivatives which does not assume regularity of the ordering cone K. This result is then used to prove that for continuous convex operators the cone of decrease directions can be represented in terms of the directional derivatices . Decrease directions are those for which the directional derivative lies in the negative interior of the ordering cone K. Finally, we show that the continuity of the convex operator can be replaced by its K-boundedness.

- Decomposition of Integer Matrices and Multileaf Collimator Sequencing (2004)
- In this paper we consider the problem of decomposing an integer matrix into a weighted sum of binary matrices that have to strict consecutive ones property.

- Decomposition of Matrices and Static Multileaf Collimators: A Survey (2006)
- Multileaf Collimators (MLC) consist of (currently 20-100) pairs of movable metal leaves which are used to block radiation in Intensity Modulated Radiation Therapy (IMRT). The leaves modulate a uniform source of radiation to achieve given intensity profiles. The modulation process is modeled by the decomposition of a given non-negative integer matrix into a non-negative linear combination of matrices with the (strict) consecutive ones property.