## Fachbereich Mathematik

### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (23)
- Bericht (6)
- Wissenschaftlicher Artikel (1)
- Vorlesung (1)

#### Schlagworte

- Mathematikunterricht (3)
- Modellierung (3)
- Standortplanung (3)
- praxisorientiert (3)
- Combinatorial Optimization (2)
- Multicriteria optimization (2)
- Multiobjective programming (2)
- modelling (2)
- praxis orientated (2)
- Approximation Algorithms (1)

- Convex Operators in Vector Optimization: Directional Derivatives and the Cone of Decrease Directions (1999)
- The paper is devoted to the investigation of directional derivatives and the cone of decrease directions for convex operators on Banach spaces. We prove a condition for the existence of directional derivatives which does not assume regularity of the ordering cone K. This result is then used to prove that for continuous convex operators the cone of decrease directions can be represented in terms of the directional derivatices . Decrease directions are those for which the directional derivative lies in the negative interior of the ordering cone K. Finally, we show that the continuity of the convex operator can be replaced by its K-boundedness.

- Minimizing the Number of Apertures in Multileaf Collimator Sequencing with Field Splitting (2015)
- In this paper we consider the problem of decomposing a given integer matrix A into a positive integer linear combination of consecutive-ones matrices with a bound on the number of columns per matrix. This problem is of relevance in the realization stage of intensity modulated radiation therapy (IMRT) using linear accelerators and multileaf collimators with limited width. Constrained and unconstrained versions of the problem with the objectives of minimizing beam-on time and decomposition cardinality are considered. We introduce a new approach which can be used to find the minimum beam-on time for both constrained and unconstrained versions of the problem. The decomposition cardinality problem is shown to be NP-hard and an approach is proposed to solve the lexicographic decomposition problem of minimizing the decomposition cardinality subject to optimal beam-on time.

- Saddle Points and Pareto Points in Multiple Objective Programming (1999)
- In this paper relationships between Pareto points and saddle points in multiple objective programming are investigated. Convex and nonconvex problems are considered and the equivalence between Pareto points and saddle points is proved in both cases. The results are based on scalarizations of multiple objective programs and related linear and augmented Lagrangian functions. Partitions of the index sets of objectives and constranints are introduced to reduce the size of the problems. The relevance of the results in the context of decision making is also discussed.

- A Fuzzy Programming Approach to Multicriteria Facility Location Problems (1999)
- Facility Location Problems are concerned with the optimal location of one or several new facilities, with respect to a set of existing ones. The objectives involve the distance between new and existing facilities, usually a weighted sum or weighted maximum. Since the various stakeholders (decision makers) will have different opinions of the importance of the existing facilities, a multicriteria problem with several sets of weights, and thus several objectives, arises. In our approach, we assume the decision makers to make only fuzzy comparisons of the different existing facilities. A geometric mean method is used to obtain the fuzzy weights for each facility and each decision maker. The resulting multicriteria facility location problem is solved using fuzzy techniques again. We prove that the final compromise solution is weakly Pareto optimal and Pareto optimal, if it is unique, or under certain assumptions on the estimates of the Nadir point. A numerical example is considered to illustrate the methodology.

- Nadir Values: Computation and Use in Compromise Programming (2000)
- In this paper we investigate the problem offending the Nadir point for multicriteria optimization problems (MOP). The Nadir point is characterized by the component wise maximal values of efficient points for (MOP). It can be easily computed in the bicriteria case. However, in general this problem is very difficult. We review some existing methods and heuristics and propose some new ones. We propose a general method to compute Nadir values for the case of three objectives, based on theoretical results valid for any number of criteria. We also investigate the use of the Nadir point for compromise programming, when the goal is to be as far away as possible from the worst outcomes. We prove some results about (weak) Pareto optimality of the resulting solutions. The results are illustrated by examples.

- A Level Set Method for Multiobjective Combinatorial Optimization: Application to the Quadratic Assignment Problem (2002)
- Multiobjective combinatorial optimization problems have received increasing attention in recent years. Nevertheless, many algorithms are still restricted to the bicriteria case. In this paper we propose a new algorithm for computing all Pareto optimal solutions. Our algorithm is based on the notion of level sets and level curves and contains as a subproblem the determination of K best solutions for a single objective combinatorial optimization problem. We apply the method to the Multiobjective Quadratic Assignment Problem (MOQAP). We present two algorithms for ranking QAP solutions and nally give computational results comparing the methods.

- An Improved Epsilon-Constraint Method for Multiobjective Programming (2005)
- In this paper we revisit one of the most important scalarization techniques used in multiobjective programming, the \(\varepsilon\)-constraint method.

- Bicriteria cost versus service analysis of the distribution network of a chemical company (1998)
- In order to improve the distribution system for the Nordic countries the BASF AG considered 13 alternative scenarios to the existing system. These involved the construction of warehouses at various locations. For every scenario the transportation, storage, and handling cost incurred was to be as low as possible, where restrictions on the delivery time were given. The scenarios were evaluated according to (minimal) total cost and weighted average delivery time. The results led to a restriction to only three cases, involving only one new warehouse each. For these a more accurate model for the cost was developped and evaluated, yielding results similar to a simple linear model. Since there were no clear preferences between cost and delivery time, the final decision was chosen to represent a compromise between the two criteria.

- On the number of Criteria Needed to Decide Pareto Optimality (1999)
- In this paper we prove a reduction result for the number of criteria in convex multiobjective optimization. This result states that to decide wheter a point x in the decision space is pareto optimal it suffices to consider at most n? criteria at a time, where n is the dimension of the decision space. The main theorem is based on a geometric characterization of pareto, strict pareto and weak pareto solutions

- On the Number of Criteria Needed to Decide Pareto Optimality (2000)
- In this paper we address the question of how many objective functions are needed to decide whether a given point is a Pareto optimal solution for a multicriteria optimization problem. We extend earlier results showing that the set of weakly Pareto optimal points is the union of Pareto optimal sets of subproblems and show their limitations. We prove that for strictly quasi-convex problems in two variables Pareto optimality can be decided by consideration of at most three objectives at a time. Our results are based on a geometric characterization of Pareto, strict Pareto and weak Pareto solutions and Helly's Theorem. We also show that a generalization to quasi-convex objectives is not possible, and state a weaker result for this case. Furthermore, we show that a generalization to strictly Pareto optimal solutions is impossible, even in the convex case.