## Fachbereich Mathematik

### Refine

#### Year of publication

#### Document Type

- Preprint (34)
- Report (9)
- Article (1)
- Course Material (1)

#### Keywords

- Mathematikunterricht (9)
- Modellierung (9)
- praxisorientiert (9)
- Lineare Algebra (6)
- modelling (6)
- linear algebra (4)
- mathematical education (4)
- praxis orientated (4)
- Lineare Optimierung (3)
- Simplex (3)

- A Finite Dominating Set Algorithm for a Dynamic Location Problem in the Plane (2014)
- A single facility problem in the plane is considered, where an optimal location has to be identified for each of finitely many time-steps with respect to time-dependent weights and demand points. It is shown that the median objective can be reduced to a special case of the static multifacility median problem such that results from the latter can be used to tackle the dynamic location problem. When using block norms as distance measure between facilities, a Finite Dominating Set (FDS) is derived. For the special case with only two time-steps, the resulting algorithm is analyzed with respect to its worst-case complexity. Due to the relation between dynamic location problems for T time periods and T-facility problems, this algorithm can also be applied to the static 2-facility location problem.

- A new sequential extraction heuristic for optimising the delivery of cancer radiation treatment using multileaf collimators (2008)
- Finding a delivery plan for cancer radiation treatment using multileaf collimators operating in ''step-and-shoot mode'' can be formulated mathematically as a problem of decomposing an integer matrix into a weighted sum of binary matrices having the consecutive-ones property - and sometimes other properties related to the collimator technology. The efficiency of the delivery plan is measured by both the sum of weights in the decomposition, known as the total beam-on time, and the number of different binary matrices appearing in it, referred to as the cardinality, the latter being closely related to the set-up time of the treatment. In practice, the total beam-on time is usually restricted to its minimum possible value, (which is easy to find), and a decomposition that minimises cardinality (subject to this restriction) is sought.

- A Note on Center Problems with forbidden Polyhedra (1999)
- The problem of finding an optimal location X* minimizing the maximum Euclidean distance to existing facilities is well solved by e.g. the Elzinga-Hearn algorithm. In practical situations X* will however often not be feasible. We therefore suggest in this note a polynomial algorithm which will find an optimal location X^F in a feasible subset F of the plane R^2

- A Note On Inverse Max Flow Problem Under Chebyshev Norm (2009)
- In this paper, we study the inverse maximum flow problem under \(\ell_\infty\)-norm and show that this problem can be solved by finding a maximum capacity path on a modified graph. Moreover, we consider an extension of the problem where we minimize the number of perturbations among all the optimal solutions of Chebyshev norm. This bicriteria version of the inverse maximum flow problem can also be solved in strongly polynomial time by finding a minimum \(s - t\) cut on the modified graph with a new capacity function.

- Acquisition Prioritization: A Multicriteria Approach Based on a Case Study (2006)
- Selection of new projects is one of the major decision making activities in any company. Given a set of potential projects to invest, a subset which matches the company's strategy and internal resources best has to be selected. In this paper, we propose a multicriteria model for portfolio selection of projects, where we take into consideration that each of the potential projects has several - usually conflicting - values.

- Algorithms for Time Dependent Bicriteria Shortest Path Problems (2003)
- We generalize the classical shortest path problem in two ways. We consider two - in general contradicting - objective functions and introduce a time dependency of the cost which is caused by a traversal time on each arc. The resulting problem, called time-dependent bicriteria shortest path problem (TdBiSP) has several interesting practical applications, but has not attained much attention in the literature.

- Algorithms for Time-Dependent Bicriteria Shortest Path Problems (revised version) (2004)
- In this paper we generalize the classical shortest path problem in two ways. We consider two objective functions and time-dependent data. The resulting problem, called the time-dependent bicriteria shortest path problem (TdBiSP), has several interesting practical applications, but has not gained much attention in the literature.

- Bicriteria approach to the optimal location of surveillance cameras (2014)
- We consider the problem of finding efficient locations of surveillance cameras, where we distinguish between two different problems. In the first, the whole area must be monitored and the number of cameras should be as small as possible. In the second, the goal is to maximize the monitored area for a fixed number of cameras. In both of these problems, restrictions on the ability of the cameras, like limited depth of view or range of vision are taken into account. We present solution approaches for these problems and report on results of their implementations applied to an authentic problem. We also consider a bicriteria problem with two objectives: maximizing the monitored area and minimizing the number of cameras, and solve it for our study case.

- Bicriteria approach to the optimal location of surveillance cameras (2014)
- We consider the problem of finding efficient locations of surveillance cameras, where we distinguish between two different problems. In the first, the whole area must be monitored and the number of cameras should be as small as possible. In the second, the goal is to maximize the monitored area for a fixed number of cameras. In both of these problems, restrictions on the ability of the cameras, like limited depth of view or range of vision are taken into account. We present solution approaches for these problems and report on results of their implementations applied to an authentic problem. We also consider a bicriteria problem with two objectives: maximizing the monitored area and minimizing the number of cameras, and solve it for our study case.

- Bills of material and linear algebra (2003)
- This publication tries to develop mathematical subjects for school from realistic problems. The center of this report are business planning and decision problems which occur in almost all companies. The main topics are: Calculation of raw material demand for given orders, consumption of existing stock and the lot sizing.