## Fachbereich Mathematik

### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (35)
- Bericht (11)
- Wissenschaftlicher Artikel (1)
- Lehrmaterial (1)
- Arbeitspapier (1)

#### Schlagworte

- Mathematikunterricht (9)
- Modellierung (9)
- praxisorientiert (9)
- Lineare Algebra (6)
- modelling (6)
- linear algebra (4)
- mathematical education (4)
- praxis orientated (4)
- Lineare Optimierung (3)
- Simplex (3)

- Universal Shortest Paths (2010)
- We introduce the universal shortest path problem (Univ-SPP) which generalizes both - classical and new - shortest path problems. Starting with the definition of the even more general universal combinatorial optimization problem (Univ-COP), we show that a variety of objective functions for general combinatorial problems can be modeled if all feasible solutions have the same cardinality. Since this assumption is, in general, not satisfied when considering shortest paths, we give two alternative definitions for Univ-SPP, one based on a sequence of cardinality contrained subproblems, the other using an auxiliary construction to establish uniform length for all paths between source and sink. Both alternatives are shown to be (strongly) NP-hard and they can be formulated as quadratic integer or mixed integer linear programs. On graphs with specific assumptions on edge costs and path lengths, the second version of Univ-SPP can be solved as classical sum shortest path problem.

- On the Generality of the Greedy Algorithm for Solving Matroid Base Problems (2013)
- It is well known that the greedy algorithm solves matroid base problems for all linear cost functions and is, in fact, correct if and only if the underlying combinatorial structure of the problem is a matroid. Moreover, the algorithm can be applied to problems with sum, bottleneck, algebraic sum or \(k\)-sum objective functions.

- Transit Dependent Evacuation Planning for Kathmandu Valley: A Case Study (2014)
- Due to the increasing number of natural or man-made disasters, the application of operations research methods in evacuation planning has seen a rising interest in the research community. From the beginning, evacuation planning has been highly focused on car-based evacuation. Recently, also the evacuation of transit depended evacuees with the help of buses has been considered. In this case study, we apply two such models and solution algorithms to evacuate a core part of the metropolitan capital city Kathmandu of Nepal as a hypothetical endangered region, where a large part of population is transit dependent. We discuss the computational results for evacuation time under a broad range of possible scenarios, and derive planning suggestions for practitioners.

- Multifacility Location Problems with Tree Structure and Finite Dominating Sets (2018)
- Multifacility location problems arise in many real world applications. Often, the facilities can only be placed in feasible regions such as development or industrial areas. In this paper we show the existence of a finite dominating set (FDS) for the planar multifacility location problem with polyhedral gauges as distance functions, and polyhedral feasible regions, if the interacting facilities form a tree. As application we show how to solve the planar 2-hub location problem in polynomial time. This approach will yield an ε-approximation for the euclidean norm case polynomial in the input data and 1/ε.

- A Finite Dominating Set Algorithm for a Dynamic Location Problem in the Plane (2014)
- A single facility problem in the plane is considered, where an optimal location has to be identified for each of finitely many time-steps with respect to time-dependent weights and demand points. It is shown that the median objective can be reduced to a special case of the static multifacility median problem such that results from the latter can be used to tackle the dynamic location problem. When using block norms as distance measure between facilities, a Finite Dominating Set (FDS) is derived. For the special case with only two time-steps, the resulting algorithm is analyzed with respect to its worst-case complexity. Due to the relation between dynamic location problems for T time periods and T-facility problems, this algorithm can also be applied to the static 2-facility location problem.

- Ranking Approach to Max-Ordering Combinatorial Optimization and Network Flows (1993)
- Max ordering (MO) optimization is introduced as tool for modelling production planning with unknown lot sizes and in scenario modelling. In MO optimization a feasible solution set \(X\) and, for each \(x\in X, Q\) individual objective functions \(f_1(x),\dots,f_Q(x)\) are given. The max ordering objective \(g(x):=max\) {\(f_1(x),\dots,f_Q(x)\)} is then minimized over all \(x\in X\). The paper discusses complexity results and describes exact and approximative algorithms for the case where \(X\) is the solution set of combinatorial optimization problems and network flow problems, respectively.

- Sink Location to Find Optimal Shelters in Evacuation Planning (2014)
- The sink location problem is a combination of network flow and location problems: From a given set of nodes in a flow network a minimum cost subset \(W\) has to be selected such that given supplies can be transported to the nodes in \(W\). In contrast to its counterpart, the source location problem which has already been studied in the literature, sinks have, in general, a limited capacity. Sink location has a decisive application in evacuation planning, where the supplies correspond to the number of evacuees and the sinks to emergency shelters. We classify sink location problems according to capacities on shelter nodes, simultaneous or non-simultaneous flows, and single or multiple assignments of evacuee groups to shelters. Resulting combinations are interpreted in the evacuation context and analyzed with respect to their worst-case complexity status. There are several approaches to tackle these problems: Generic solution methods for uncapacitated problems are based on source location and modifications of the network. In the capacitated case, for which source location cannot be applied, we suggest alternative approaches which work in the original network. It turns out that latter class algorithms are superior to the former ones. This is established in numerical tests including random data as well as real world data from the city of Kaiserslautern, Germany.

- Integrated Scheduling and Location Models: Single Machine Makespan Problems (2002)
- Scheduling and location models are often used to tackle problems in production, logistics, and supply chain management. Instead of treating these models independent of each other, as is usually done in the literature, we consider in this paper an integrated model in which the locations of machines define release times for jobs. Polynomial solution algorithms are presented for single machine problems in which the scheduling part can be solved by the earliest release time rule.

- The Multi Terminal q-FlowLoc Problem: A Heuristic (2011)
- In this paper the multi terminal q-FlowLoc problem (q-MT-FlowLoc) is introduced. FlowLoc problems combine two well-known modeling tools: (dynamic) network flows and locational analysis. Since the q-MT-FlowLoc problem is NP-hard we give a mixed integer programming formulation and propose a heuristic which obtains a feasible solution by calculating a maximum flow in a special graph H. If this flow is also a minimum cost flow, various versions of the heuristic can be obtained by the use of different cost functions. The quality of this solutions is compared.

- Algorithms for Time Dependent Bicriteria Shortest Path Problems (2003)
- We generalize the classical shortest path problem in two ways. We consider two - in general contradicting - objective functions and introduce a time dependency of the cost which is caused by a traversal time on each arc. The resulting problem, called time-dependent bicriteria shortest path problem (TdBiSP) has several interesting practical applications, but has not attained much attention in the literature.