## Fachbereich Mathematik

### Filtern

#### Schlagworte

- Convergence of Alternating Domain Decomposition Schemes for Kinetic and Aerodynamic Equations (1994)
- A domain decomposition scheme linking linearized kinetic and aerodynamic equations is considered. Convergence of the alternating scheme is shown. Moreover the physical correctness of the obtained coupled solutions is discussed.

- A Numerical Method for Computing Asymptotic States and Outgoing Distributions for Kinetic Linear Half-Space Problems (1994)
- Linear half-space problems can be used to solve domain decomposition problems between Boltzmann and aerodynamic equations. A new fast numerical method computing the asymptotic states and outgoing distributions for a linearized BGK half-space problem is presented. Relations with the so-called variational methods are discussed. In particular, we stress the connection between these methods and Chapman-Enskog type expansions.

- On the Connection of the Formulae for Entropy and Stationary Distribution (1994)
- As it is well known in statistical physics the stationary distribution can be obtained by maximizing entropy. We show how one can reconstruct the formula for entropy knowing the formula for the stationary distribution. A general case is discussed and some concrete physical examples are considered.

- Computation of Nonlinear Functionals in Particle Methods (1994)
- We consider the numerical computation of nonlinear functionals of distribution functions approximated by point measures. Two methods are described and estimates for the speed of convergence as the number of points tends to infinity are given. Moreover numerical results for the entropy functional are presented.

- Domain Decomposition for Kinetic Problems with Nonequilibrium States (1994)
- A nonequilibrium situation governed by kinetic equations with strongly contrasted Knudsen numbers in different subdomains is discussed. We consider a domain decomposition problem for Boltzmann- and Euler equations, establish the correct coupling conditions and prove the validity of the obtained coupled solution. Moreover numerical examples comparing different types of coupling conditions are presented.

- Domain decomposition for kinetic problems with strongly contrasted Knudsen numbers (1994)
- A nonequilibrium situation governed by kinetic equations with strongly contrasted Knudsen numbers in different subdomains is discussed. We consider a domain decomposition problem for Boltzmann- and Euler equations, establish the correct coupling conditions and prove the validity of the obtained coupled solution . Moreover numerical examples comparing different types of coupling conditions are presented.

- Asymptotic-Induced Domain Decomposition Methods for Kinetic and Drift Diffusion Semiconductor Equations (1995)
- This paper deals with domain decomposition methods for kinetic and drift diffusion semiconductor equations. In particular accurate coupling conditions at the interface between the kinetic and drift diffusion domain are given. The cases of slight and strong nonequilibrium situations at the interface are considered and some numerical examples are shown.

- A Kinetic Model for Vehicular Traffic Derived from a Stochastic Microscopic Model (1995)
- A way to derive consistently kinetic models for vehicular traffic from microscopic follow the leader models is presented. The obtained class of kinetic equations is investigated. Explicit examples for kinetic models are developed with a particular emphasis on obtaining models, that give realistic results. For space homogeneous traffic flow situations numerical examples are given including stationary distributions and fundamental diagrams.

- Particle Methods: Theory and Applications (1995)
- In the present paper a review on particle methods and their applications to evolution equations is given. In particular, particle methods for Euler- and Boltzmann equations are considered.

- Mathematical Models for Vehicular Traffic (1995)
- This survey contains a description of different types of mathematical models used for the simulation of vehicular traffic. It includes models based on ordinary differential equations, fluid dynamic equations and on equations of kinetic type. Connections between the different types of models are mentioned. Particular emphasis is put on kinetic models and on simulation methods for these models.