## Fachbereich Mathematik

### Filtern

#### Schlagworte

- Uniform Stability of a Finite Difference Scheme for Transport Equations in Diffusive Regimes (2000)
- An asymptotic preserving numerical scheme (with respect to diffusion scalings) for a linear transport equation is investigated. The scheme is adopted from a class of recently developped schemes. Stability is proven uniformly in the mean free path under a CFL type condition turning into a parabolic CFL condition in the diffusion limit.

- Transition from Kinetic Theory to Macroscopic Fluid Equations: A Problem fo Domain Decomposition and a Source for New Algorithms (1999)
- In the paper we discuss the transition from kinetic theory to macroscopic fluid equations, where the macroscopic equations are defined as aymptotic limits of a kinetic equation. This relation can be used to derive computationally efficient domain decomposition schemes for the simulaion of rarefied gas flows close to the continuum limit. Moreover, we present some basic ideas for the derivation of kinetic induced numerical schemes for macroscopic equations, namely kinetic schemes for general conservation laws as well as Lattice-Boltzmann methods for the incompressible Navier-Stokes equations.

- Particle Methods: Theory and Applications (1995)
- In the present paper a review on particle methods and their applications to evolution equations is given. In particular, particle methods for Euler- and Boltzmann equations are considered.

- On the Connection of the Formulae for Entropy and Stationary Distribution (1994)
- As it is well known in statistical physics the stationary distribution can be obtained by maximizing entropy. We show how one can reconstruct the formula for entropy knowing the formula for the stationary distribution. A general case is discussed and some concrete physical examples are considered.

- Mathematical Models for Vehicular Traffic (1995)
- This survey contains a description of different types of mathematical models used for the simulation of vehicular traffic. It includes models based on ordinary differential equations, fluid dynamic equations and on equations of kinetic type. Connections between the different types of models are mentioned. Particular emphasis is put on kinetic models and on simulation methods for these models.

- Enskog-like kinetic models for vehicular traffic (1996)
- In the present paper a general criticism of kinetic equations for vehicular traffic is given. The necessity of introducing an Enskog-type correction into these equations is shown. An Enskog-line kinetic traffic flow equation is presented and fluid dynamic equations are derived. This derivation yields new coefficients for the standard fluid dynamic equations of vehicular traffic. Numerical simulations for inhomogeneous traffic flow situations are shown together with a comparison between kinetic and fluid dynamic models.

- Domain Decomposition for Kinetic Problems with Nonequilibrium States (1994)
- A nonequilibrium situation governed by kinetic equations with strongly contrasted Knudsen numbers in different subdomains is discussed. We consider a domain decomposition problem for Boltzmann- and Euler equations, establish the correct coupling conditions and prove the validity of the obtained coupled solution. Moreover numerical examples comparing different types of coupling conditions are presented.

- Discretizations for the Incompressible Navier-Stokes Equations based on the Lattice Boltzmann Method (1999)
- A discrete velocity model with spatial and velocity discretization based on a lattice Boltzmann method is considered in the low Mach number limit. A uniform numerical scheme for this model is investigated. In the limit, the scheme reduces to a finite difference scheme for the incompressible Navier-Stokes equation which is a projection method with a second order spatial discretization on a regular grid. The discretization is analyzed and the method is compared to Chorin's original spatial discretization. Numerical results supporting the analytical statements are presented.

- Convergence of Alternating Domain Decomposition Schemes for Kinetic and Aerodynamic Equations (1994)
- A domain decomposition scheme linking linearized kinetic and aerodynamic equations is considered. Convergence of the alternating scheme is shown. Moreover the physical correctness of the obtained coupled solutions is discussed.