## Fachbereich Mathematik

### Refine

#### Year of publication

- 2015 (34) (remove)

#### Document Type

- Doctoral Thesis (19)
- Preprint (12)
- Article (1)
- Bachelor Thesis (1)
- Lecture (1)

#### Keywords

- isogeometric analysis (2)
- Asymptotic Expansion (1)
- B-Spline (1)
- Beam models (1)
- Boltzmann Equation (1)
- Brownian Diffusion (1)
- CFD (1)
- DSMC (1)
- Elasticity (1)
- Homogenization (1)
- Isogeometrische Analyse (1)
- Kirchhoff-Love shell (1)
- Leading-Order Optimality (1)
- NURBS (1)
- Nonsmooth contact dynamics (1)
- On-line algorithm (1)
- Optimale Kontrolle (1)
- Optimization (1)
- Partial Differential Equations (1)
- Pathwise Optimality (1)
- Quasi-Variational Inequalities (1)
- Rarefied gas (1)
- Regime Shifts (1)
- Rigid Body Motion (1)
- Shape optimization, gradient based optimization, adjoint method (1)
- Stochastic Impulse Control (1)
- Strukturoptimierung (1)
- Thermophoresis (1)
- Transaction Costs (1)
- bending strip method (1)
- cancer cell invasion (1)
- competitive analysis (1)
- degenerate diffusion (1)
- finite element method (1)
- global existence (1)
- haptotaxis (1)
- incompressible elasticity (1)
- intensity modulated radiation therapy, multileaf collimator sequencing, field splitting, beam-on time, decomposition cardinality (1)
- intensity modulated radiation therapy, multileaf collimator sequencing, � eld splitting, beam-on time, decomposition cardinality (1)
- intra- and extracellular proton dynamics (1)
- mixed methods (1)
- modal derivatives (1)
- model order reduction (1)
- multipatch (1)
- multiscale model (1)
- nonlinear vibration analysis (1)
- nonlocal sample dependence (1)
- online optimization (1)
- parabolic system (1)
- partial differential equations (1)
- penalty-free formulation (1)
- redundant constraint (1)
- scheduling (1)
- stochastic differential equations (1)
- tumor acidity (1)
- weak solution (1)

#### Faculty / Organisational entity

- Fachbereich Mathematik (34)
- Fraunhofer (ITWM) (2)

In this paper we propose a phenomenological model for the formation of an interstitial gap between the tumor and the stroma. The gap
is mainly filled with acid produced by the progressing edge of the tumor front. Our setting extends existing models for acid-induced tumor invasion models to incorporate
several features of local invasion like formation of gaps, spikes, buds, islands, and cavities. These behaviors are obtained mainly due to the random dynamics at the intracellular
level, the go-or-grow-or-recede dynamics on the population scale, together with the nonlinear coupling between the microscopic (intracellular) and macroscopic (population)
levels. The wellposedness of the model is proved using the semigroup technique and 1D and 2D numerical simulations are performed to illustrate model predictions and draw
conclusions based on the observed behavior.

In this paper we consider the problem of decomposing a given integer matrix A into
a positive integer linear combination of consecutive-ones matrices with a bound on the
number of columns per matrix. This problem is of relevance in the realization stage
of intensity modulated radiation therapy (IMRT) using linear accelerators and multileaf
collimators with limited width. Constrained and unconstrained versions of the problem
with the objectives of minimizing beam-on time and decomposition cardinality are considered.
We introduce a new approach which can be used to find the minimum beam-on
time for both constrained and unconstrained versions of the problem. The decomposition
cardinality problem is shown to be NP-hard and an approach is proposed to solve the
lexicographic decomposition problem of minimizing the decomposition cardinality subject
to optimal beam-on time.

In this thesis we extend the worst-case modeling approach as first introduced by Hua and Wilmott (1997) (option pricing in discrete time) and Korn and Wilmott (2002) (portfolio optimization in continuous time) in various directions.
In the continuous-time worst-case portfolio optimization model (as first introduced by Korn and Wilmott (2002)), the financial market is assumed to be under the threat of a crash in the sense that the stock price may crash by an unknown fraction at an unknown time. It is assumed that only an upper bound on the size of the crash is known and that the investor prepares for the worst-possible crash scenario. That is, the investor aims to find the strategy maximizing her objective function in the worst-case crash scenario.
In the first part of this thesis, we consider the model of Korn and Wilmott (2002) in the presence of proportional transaction costs. First, we treat the problem without crashes and show that the value function is the unique viscosity solution of a dynamic programming equation (DPE) and then construct the optimal strategies. We then consider the problem in the presence of crash threats, derive the corresponding DPE and characterize the value function as the unique viscosity solution of this DPE.
In the last part, we consider the worst-case problem with a random number of crashes by proposing a regime switching model in which each state corresponds to a different crash regime. We interpret each of the crash-threatened regimes of the market as states in which a financial bubble has formed which may lead to a crash. In this model, we prove that the value function is a classical solution of a system of DPEs and derive the optimal strategies.

We discuss the problem of evaluating a robust solution.
To this end, we first give a short primer on how to apply robustification approaches to uncertain optimization problems using the assignment problem and the knapsack problem as illustrative examples.
As it is not immediately clear in practice which such robustness approach is suitable for the problem at hand,
we present current approaches for evaluating and comparing robustness from the literature, and introduce the new concept of a scenario curve. Using the methods presented in this paper, an easy guide is given to the decision maker to find, solve and compare the best robust optimization method for his purposes.

Many tasks in image processing can be tackled by modeling an appropriate data fidelity term \(\Phi: \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}\) and then solve one of the regularized minimization problems \begin{align*}
&{}(P_{1,\tau}) \qquad \mathop{\rm argmin}_{x \in \mathbb R^n} \big\{ \Phi(x) \;{\rm s.t.}\; \Psi(x) \leq \tau \big\} \\ &{}(P_{2,\lambda}) \qquad \mathop{\rm argmin}_{x \in \mathbb R^n} \{ \Phi(x) + \lambda \Psi(x) \}, \; \lambda > 0 \end{align*} with some function \(\Psi: \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}\) and a good choice of the parameter(s). Two tasks arise naturally here: \begin{align*} {}& \text{1. Study the solver sets \({\rm SOL}(P_{1,\tau})\) and
\({\rm SOL}(P_{2,\lambda})\) of the minimization problems.} \\ {}& \text{2. Ensure that the minimization problems have solutions.} \end{align*} This thesis provides contributions to both tasks: Regarding the first task for a more special setting we prove that there are intervals \((0,c)\) and \((0,d)\) such that the setvalued curves \begin{align*}
\tau \mapsto {}& {\rm SOL}(P_{1,\tau}), \; \tau \in (0,c) \\ {} \lambda \mapsto {}& {\rm SOL}(P_{2,\lambda}), \; \lambda \in (0,d) \end{align*} are the same, besides an order reversing parameter change \(g: (0,c) \rightarrow (0,d)\). Moreover we show that the solver sets are changing all the time while \(\tau\) runs from \(0\) to \(c\) and \(\lambda\) runs from \(d\) to \(0\).
In the presence of lower semicontinuity the second task is done if we have additionally coercivity. We regard lower semicontinuity and coercivity from a topological point of view and develop a new technique for proving lower semicontinuity plus coercivity.
Dropping any lower semicontinuity assumption we also prove a theorem on the coercivity of a sum of functions.

In this thesis we develop a shape optimization framework for isogeometric analysis in the optimize first–discretize then setting. For the discretization we use
isogeometric analysis (iga) to solve the state equation, and search optimal designs in a space of admissible b-spline or nurbs combinations. Thus a quite
general class of functions for representing optimal shapes is available. For the
gradient-descent method, the shape derivatives indicate both stopping criteria and search directions and are determined isogeometrically. The numerical treatment requires solvers for partial differential equations and optimization methods, which introduces numerical errors. The tight connection between iga and geometry representation offers new ways of refining the geometry and analysis discretization by the same means. Therefore, our main concern is to develop the optimize first framework for isogeometric shape optimization as ground work for both implementation and an error analysis. Numerical examples show that this ansatz is practical and case studies indicate that it allows local refinement.

We consider storage loading problems where items with uncertain weights have
to be loaded into a storage area, taking into account stacking and
payload constraints. Following the robust optimization paradigm, we propose
strict and adjustable optimization models for finite and interval-based
uncertainties. To solve these problems, exact decomposition and heuristic
solution algorithms are developed.
For strict robustness, we also present a compact formulation based
on a characterization of worst-case scenarios.
Computational results show that computation times and algorithm
gaps are reasonable for practical applications.
Furthermore, we find that the robustness concepts show different
potential depending on the type of data being used.

This work aims at including nonlinear elastic shell models in a multibody framework. We focus our attention to Kirchhoff-Love shells and explore the benefits of an isogeometric approach, the latest development in finite element methods, within a multibody system. Isogeometric analysis extends isoparametric finite elements to more general functions such as B-Splines and Non-Uniform Rational B-Splines (NURBS) and works on exact geometry representations even at the coarsest level of discretizations. Using NURBS as basis functions, high regularity requirements of the shell model, which are difficult to achieve with standard finite elements, are easily fulfilled. A particular advantage is the promise of simplifying the mesh generation step, and mesh refinement is easily performed by eliminating the need for communication with the geometry representation in a Computer-Aided Design (CAD) tool.
Quite often the domain consists of several patches where each patch is parametrized by means of NURBS, and these patches are then glued together by means of continuity conditions. Although the techniques known from domain decomposition can be carried over to this situation, the analysis of shell structures is substantially more involved as additional angle preservation constraints between the patches might arise. In this work, we address this issue in the stationary and transient case and make use of the analogy to constrained mechanical systems with joints and springs as interconnection elements. Starting point of our work is the bending strip method which is a penalty approach that adds extra stiffness to the interface between adjacent patches and which is found to lead to a so-called stiff mechanical system that might suffer from ill-conditioning and severe stepsize restrictions during time integration. As a remedy, an alternative formulation is developed that improves the condition number of the system and removes the penalty parameter dependence. Moreover, we study another alternative formulation with continuity constraints applied to triples of control points at the interface. The approach presented here to tackle stiff systems is quite general and can be applied to all penalty problems fulfilling some regularity requirements.
The numerical examples demonstrate an impressive convergence behavior of the isogeometric approach even for a coarse mesh, while offering substantial savings with respect to the number of degrees of freedom. We show a comparison between the different multipatch approaches and observe that the alternative formulations are well conditioned, independent of any penalty parameter and give the correct results. We also present a technique to couple the isogeometric shells with multibody systems using a pointwise interaction.

Scheduling-Location (ScheLoc) Problems integrate the separate fields of
scheduling and location problems. In ScheLoc Problems the objective is to
find locations for the machines and a schedule for each machine subject to
some production and location constraints such that some scheduling object-
ive is minimized. In this paper we consider the Discrete Parallel Machine
Makespan (DPMM) ScheLoc Problem where the set of possible machine loc-
ations is discrete and a set of n jobs has to be taken to the machines and
processed such that the makespan is minimized. Since the separate location
and scheduling problem are both NP-hard, so is the corresponding ScheLoc
Problem. Therefore, we propose an integer programming formulation and
different versions of clustering heuristics, where jobs are split into clusters
and each cluster is assigned to one of the possible machine locations. Since
the IP formulation can only be solved for small scale instances we propose
several lower bounds to measure the quality of the clustering heuristics. Ex-
tensive computational tests show the efficiency of the heuristics.

We study an online flow shop scheduling problem where each job consists of several tasks that have to be completed in t different stages and the goal is to maximize the total weight of accepted jobs.
The set of tasks of a job contains one task for each stage and each stage has a dedicated set of identical parallel machines corresponding to it that can only process tasks of this stage. In order to gain the weight (profit) associated with a job j, each of its tasks has to be executed between a task-specific release date and deadline subject to the constraint that all tasks of job j from stages 1, …, i-1 have to be completed before the task of the ith stage can be started. In the online version, jobs arrive over time and all information about the tasks of a job becomes available at the release date of its first task. This model can be used to describe production processes in supply chains when customer orders arrive online.
We show that even the basic version of the offline problem with a single machine in each stage, unit weights, unit processing times, and fixed execution times for all tasks (i.e., deadline minus release date equals processing time) is APX-hard. Moreover, we show that the approximation ratio of any polynomial-time approximation algorithm for this basic version of the problem must depend on the number t of stages.
For the online version of the basic problem, we provide a (2t-1)-competitive deterministic online algorithm and a matching lower bound. Moreover, we provide several (sometimes tight) upper and lower bounds on the competitive ratio of online algorithms for several generalizations of the basic problem involving different weights, arbitrary release dates and deadlines, different processing times of tasks, and several identical machines per stage.

We consider the multiscale model for glioma growth introduced in a previous work and extend it to account
for therapy effects. Thereby, three treatment strategies involving surgical resection, radio-, and
chemotherapy are compared for their efficiency. The chemotherapy relies on inhibiting the binding
of cell surface receptors to the surrounding tissue, which impairs both migration and proliferation.

In some processes for spinning synthetic fibers the filaments are exposed to highly turbulent air flows to achieve a high degree of stretching (elongation). The quality of the resulting filaments, namely thickness and uniformity, is thus determined essentially by the aerodynamic force coming from the turbulent flow. Up to now, there is a gap between the elongation measured in experiments and the elongation obtained by numerical simulations available in the literature.
The main focus of this thesis is the development of an efficient and sufficiently accurate simulation algorithm for the velocity of a turbulent air flow and the application in turbulent spinning processes.
In stochastic turbulence models the velocity is described by an \(\mathbb{R}^3\)-valued random field. Based on an appropriate description of the random field by Marheineke, we have developed an algorithm that fulfills our requirements of efficiency and accuracy. Applying a resulting stochastic aerodynamic drag force on the fibers then allows the simulation of the fiber dynamics modeled by a random partial differential algebraic equation system as well as a quantization of the elongation in a simplified random ordinary differential equation model for turbulent spinning. The numerical results are very promising: whereas the numerical results available in the literature can only predict elongations up to order \(10^4\) we get an order of \(10^5\), which is closer to the elongations of order \(10^6\) measured in experiments.

The Wilkie model is a stochastic asset model, developed by A.D. Wilkie in 1984 with a purpose to explore the behaviour of investment factors of insurers within the United Kingdom. Even so, there is still no analysis that studies the Wilkie model in a portfolio optimization framework thus far. Originally, the Wilkie model is considering a discrete-time horizon and we apply the concept of Wilkie model to develop a suitable ARIMA model for Malaysian data by using Box-Jenkins methodology. We obtained the estimated parameters for each sub model within the Wilkie model that suits the case of Malaysia, and permits us to analyse the result based on statistics and economics view. We then tend to review the continuous time case which was initially introduced by Terence Chan in 1998. The continuous-time Wilkie model inspired is then being employed to develop the wealth equation of a portfolio that consists of a bond and a stock. We are interested in building portfolios based on three well-known trading strategies, a self-financing strategy, a constant growth optimal strategy as well as a buy-and-hold strategy. In dealing with the portfolio optimization problems, we use the stochastic control technique consisting of the maximization problem itself, the Hamilton-Jacobi-equation, the solution to the Hamilton-Jacobi-equation and finally the verification theorem. In finding the optimal portfolio, we obtained the specific solution of the Hamilton-Jacobi-equation and proved the solution via the verification theorem. For a simple buy-and-hold strategy, we use the mean-variance analysis to solve the portfolio optimization problem.

Motivated by the results of infinite dimensional Gaussian analysis and especially white noise analysis, we construct a Mittag-Leffler analysis. This is an infinite dimensional analysis with respect to non-Gaussian measures of Mittag-Leffler type which we call Mittag-Leffler measures. Our results indicate that the Wick ordered polynomials, which play a key role in Gaussian analysis, cannot be generalized to this non-Gaussian case. We provide evidence that a system of biorthogonal polynomials, called generalized Appell system, is applicable to the Mittag-Leffler measures, instead of using Wick ordered polynomials. With the help of an Appell system, we introduce a test function and a distribution space. Furthermore we give characterizations of the distribution space and we characterize the weak integrable functions and the convergent sequences within the distribution space. We construct Donsker's delta in a non-Gaussian setting as an application.
In the second part, we develop a grey noise analysis. This is a special application of the Mittag-Leffler analysis. In this framework, we introduce generalized grey Brownian motion and prove differentiability in a distributional sense and the existence of generalized grey Brownian motion local times. Grey noise analysis is then applied to the time-fractional heat equation and the time-fractional Schrödinger equation. We prove a generalization of the fractional Feynman-Kac formula for distributional initial values. In this way, we find a Green's function for the time-fractional heat equation which coincides with the solutions given in the literature.

For the prediction of digging forces from a granular material simulation, the
Nonsmooth Contact Dynamics Method is examined. First, the equations of motion
for nonsmooth mechanical systems are laid out. They are a differential
variational inequality that has the same structure as classical discrete algebraic equations. Using a Galerkin projection in time, it becomes possible to derive
nonsmooth versions of the classical SHAK and RATTLE integrators.
A matrix-free Interior Point Method is used for the complementarity
problems that need to be solved in every time step. It is shown that this method
outperforms the Projected Gauss-Jacobi method by several orders of magnitude
and produces the same digging force result as the Discrete Element Method in comparable computing time.

A nonlocal stochastic model for intra- and extracellular proton dynamics in a tumor is proposed.
The intracellular dynamics is governed by an SDE coupled to a reaction-diffusion
equation for the extracellular proton concentration on the macroscale. In a more general context
the existence and uniqueness of solutions for local and nonlocal
SDE-PDE systems are established allowing, in particular, to analyze the proton dynamics model both,
in its local version and the case with nonlocal path dependence.
Numerical simulations are performed
to illustrate the behavior of solutions, providing some insights into the effects of randomness on tumor acidity.

The overall goal of the work is to simulate rarefied flows inside geometries with moving boundaries. The behavior of a rarefied flow is characterized through the Knudsen number \(Kn\), which can be very small (\(Kn < 0.01\) continuum flow) or larger (\(Kn > 1\) molecular flow). The transition region (\(0.01 < Kn < 1\)) is referred to as the transition flow regime.
Continuum flows are mainly simulated by using commercial CFD methods, which are used to solve the Euler equations. In the case of molecular flows one uses statistical methods, such as the Direct Simulation Monte Carlo (DSMC) method. In the transition region Euler equations are not adequate to model gas flows. Because of the rapid increase of particle collisions the DSMC method tends to fail, as well
Therefore, we develop a deterministic method, which is suitable to simulate problems of rarefied gases for any Knudsen number and is appropriate to simulate flows inside geometries with moving boundaries. Thus, the method we use is the Finite Pointset Method (FPM), which is a mesh-free numerical method developed at the ITWM Kaiserslautern and is mainly used to solve fluid dynamical problems.
More precisely, we develop a method in the FPM framework to solve the BGK model equation, which is a simplification of the Boltzmann equation. This equation is mainly used to describe rarefied flows.
The FPM based method is implemented for one and two dimensional physical and velocity space and different ranges of the Knudsen number. Numerical examples are shown for problems with moving boundaries. It is seen, that our method is superior to regular grid methods with respect to the implementation of boundary conditions. Furthermore, our results are comparable to reference solutions gained through CFD- and DSMC methods, respectevly.

In this thesis, we investigate several upcoming issues occurring in the context of conceiving and building a decision support system. We elaborate new algorithms for computing representative systems with special quality guarantees, provide concepts for supporting the decision makers after a representative system was computed, and consider a methodology of combining two optimization problems.
We review the original Box-Algorithm for two objectives by Hamacher et al. (2007) and discuss several extensions regarding coverage, uniformity, the enumeration of the whole nondominated set, and necessary modifications if the underlying scalarization problem cannot be solved to optimality. In a next step, the original Box-Algorithm is extended to the case of three objective functions to compute a representative system with desired coverage error. Besides the investigation of several theoretical properties, we prove the correctness of the algorithm, derive a bound on the number of iterations needed by the algorithm to meet the desired coverage error, and propose some ideas for possible extensions.
Furthermore, we investigate the problem of selecting a subset with desired cardinality from the computed representative system, the Hypervolume Subset Selection Problem (HSSP). We provide two new formulations for the bicriteria HSSP, a linear programming formulation and a \(k\)-link shortest path formulation. For the latter formulation, we propose an algorithm for which we obtain the currently best known complexity bound for solving the bicriteria HSSP. For the tricriteria HSSP, we propose an integer programming formulation with a corresponding branch-and-bound scheme.
Moreover, we address the issue of how to present the whole set of computed representative points to the decision makers. Based on common illustration methods, we elaborate an algorithm guiding the decision makers in choosing their preferred solution.
Finally, we step back and look from a meta-level on the issue of how to combine two given optimization problems and how the resulting combinations can be related to each other. We come up with several different combined formulations and give some ideas for the practical approach.

This bachelor thesis is concerned with arrangements of hyperplanes, that
is, finite collections of hyperplanes in a finite-dimensional vector
space. Such arrangements can be studied using methods from
combinatorics, topology or algebraic geometry. Our focus lies on an
algebraic object associated to an arrangement \(\mathcal{A}\), the module \(\mathcal{D(A)}\) of
logarithmic derivations along \(\mathcal{A}\). It was introduced by K. Saito in the
context of singularity theory, and intensively studied by Terao and
others. If \(\mathcal{D(A)}\) admits a basis, the arrangement \(\mathcal{A}\) is called free.
Ziegler generalized the concept of freeness to so-called
multiarrangements, where each hyperplane carries a multiplicity. Terao
conjectured that freeness of arrangements can be decided based on the
combinatorics. We pursue the analogous question for multiarrangements in
special cases. Firstly, we give a new proof of a result of Ziegler
stating that generic multiarrangements are totally non-free, that is,
non-free for any multiplicity. Our proof relies on the new concept of
unbalanced multiplicities. Secondly, we consider freeness asymptotically
for increasing multiplicity of a fixed hyperplane. We give an explicit
bound for the multiplicity where the freeness property has stabilized.

A new solution approach for solving the 2-facility location problem in the plane with block norms
(2015)

Motivated by the time-dependent location problem over T time-periods introduced in
Maier and Hamacher (2015) we consider the special case of two time-steps, which was shown
to be equivalent to the static 2-facility location problem in the plane. Geometric optimality
conditions are stated for the median objective. When using block norms, these conditions
are used to derive a polygon grid inducing a subdivision of the plane based on normal cones,
yielding a new approach to solve the 2-facility location problem in polynomial time. Combinatorial algorithms for the 2-facility location problem based on geometric properties are
deduced and their complexities are analyzed. These methods differ from others as they are
completely working on geometric objects to derive the optimal solution set.

This thesis is concerned with stochastic control problems under transaction costs. In particular, we consider a generalized menu cost problem with partially controlled regime switching, general multidimensional running cost problems and the maximization of long-term growth rates in incomplete markets. The first two problems are considered under a general cost structure that includes a fixed cost component, whereas the latter is analyzed under proportional and Morton-Pliska
transaction costs.
For the menu cost problem and the running cost problem we provide an equivalent characterization of the value function by means of a generalized version of the Ito-Dynkin formula instead of the more restrictive, traditional approach via the use of quasi-variational inequalities (QVIs). Based on the finite element method and weak solutions of QVIs in suitable Sobolev spaces, the value function is constructed iteratively. In addition to the analytical results, we study a novel application of the menu cost problem in management science. We consider a company that aims to implement an optimal investment and marketing strategy and must decide when to issue a new version of a product and when and how much
to invest into marketing.
For the long-term growth rate problem we provide a rigorous asymptotic analysis under both proportional and Morton-Pliska transaction costs in a general incomplete market that includes, for instance, the Heston stochastic volatility model and the Kim-Omberg stochastic excess return model as special cases. By means of a dynamic programming approach leading-order optimal strategies are constructed
and the leading-order coefficients in the expansions of the long-term growth rates are determined. Moreover, we analyze the asymptotic performance of Morton-Pliska strategies in settings with proportional transaction costs. Finally, pathwise optimality of the constructed strategies is established.

In this work we focus on the regression models with asymmetrical error distribution,
more precisely, with extreme value error distributions. This thesis arises in the framework
of the project "Robust Risk Estimation". Starting from July 2011, this project won
three years funding by the Volkswagen foundation in the call "Extreme Events: Modelling,
Analysis, and Prediction" within the initiative "New Conceptual Approaches to
Modelling and Simulation of Complex Systems". The project involves applications in
Financial Mathematics (Operational and Liquidity Risk), Medicine (length of stay and
cost), and Hydrology (river discharge data). These applications are bridged by the
common use of robustness and extreme value statistics.
Within the project, in each of these applications arise issues, which can be dealt with by
means of Extreme Value Theory adding extra information in the form of the regression
models. The particular challenge in this context concerns asymmetric error distributions,
which significantly complicate the computations and make desired robustification
extremely difficult. To this end, this thesis makes a contribution.
This work consists of three main parts. The first part is focused on the basic notions
and it gives an overview of the existing results in the Robust Statistics and Extreme
Value Theory. We also provide some diagnostics, which is an important achievement of
our project work. The second part of the thesis presents deeper analysis of the basic
models and tools, used to achieve the main results of the research.
The second part is the most important part of the thesis, which contains our personal
contributions. First, in Chapter 5, we develop robust procedures for the risk management
of complex systems in the presence of extreme events. Mentioned applications use time
structure (e.g. hydrology), therefore we provide extreme value theory methods with time
dynamics. To this end, in the framework of the project we considered two strategies. In
the first one, we capture dynamic with the state-space model and apply extreme value
theory to the residuals, and in the second one, we integrate the dynamics by means of
autoregressive models, where the regressors are described by generalized linear models.
More precisely, since the classical procedures are not appropriate to the case of outlier
presence, for the first strategy we rework classical Kalman smoother and extended
Kalman procedures in a robust way for different types of outliers and illustrate the performance
of the new procedures in a GPS application and a stylized outlier situation.
To apply approach to shrinking neighborhoods we need some smoothness, therefore for
the second strategy, we derive smoothness of the generalized linear model in terms of
L2 differentiability and create sufficient conditions for it in the cases of stochastic and
deterministic regressors. Moreover, we set the time dependence in these models by
linking the distribution parameters to the own past observations. The advantage of
our approach is its applicability to the error distributions with the higher dimensional
parameter and case of regressors of possibly different length for each parameter. Further,
we apply our results to the models with generalized Pareto and generalized extreme value
error distributions.
Finally, we create the exemplary implementation of the fixed point iteration algorithm
for the computation of the optimally robust in
uence curve in R. Here we do not aim to
provide the most
exible implementation, but rather sketch how it should be done and
retain points of particular importance. In the third part of the thesis we discuss three applications,
operational risk, hospitalization times and hydrological river discharge data,
and apply our code to the real data set taken from Jena university hospital ICU and
provide reader with the various illustrations and detailed conclusions.

Das Ziel dieser Dissertation ist die Entwicklung und Implementation eines Algorithmus zur Berechnung von tropischen Varietäten über allgemeine bewertete Körper. Die Berechnung von tropischen Varietäten über Körper mit trivialer Bewertung ist ein hinreichend gelöstes Problem. Hierfür kombinieren die Autoren Bogart, Jensen, Speyer, Sturmfels und Thomas eindrucksvoll klassische Techniken der Computeralgebra mit konstruktiven Methoden der konvexer Geometrie.
Haben wir allerdings einen Grundkörper mit nicht-trivialer Bewertung, wie zum Beispiel den Körper der \(p\)-adischen Zahlen \(\mathbb{Q}_p\), dann stößt die konventionelle Gröbnerbasentheorie scheinbar an ihre Grenzen. Die zugrundeliegenden Monomordnungen sind nicht geeignet um Problemstellungen zu untersuchen, die von einer nicht-trivialen Bewertung auf den Koeffizienten abhängig sind. Dies führte zu einer Reihe von Arbeiten, welche die gängige Gröbnerbasentheorie modifizieren um die Bewertung des Grundkörpers einzubeziehen.\[\phantom{newline}\]
In dieser Arbeit präsentieren wir einen alternativen Ansatz und zeigen, wie sich die Bewertung mittels einer speziell eingeführten Variable emulieren lässt, so dass eine Modifikation der klassischen Werkzeuge nicht notwendig ist.
Im Rahmen dessen wird Theorie der Standardbasen auf Potenzreihen über einen Koeffizientenring verallgemeinert. Hierbei wird besonders Wert darauf gelegt, dass alle Algorithmen bei polynomialen Eingabedaten mit ihren klassischen Pendants übereinstimmen, sodass für praktische Zwecke auf bereits etablierte Softwaresysteme zurückgegriffen werden kann. Darüber hinaus wird die Konstruktion des Gröbnerfächers sowie die Technik des Gröbnerwalks für leicht inhomogene Ideale eingeführt. Dies ist notwendig, da bei der Einführung der neuen Variable die Homogenität des Ausgangsideal gebrochen wird.\[\phantom{newline}\]
Alle Algorithmen wurden in Singular implementiert und sind als Teil der offiziellen Distribution erhältlich. Es ist die erste Implementation, welches in der Lage ist tropische Varietäten mit \(p\)-adischer Bewertung auszurechnen. Im Rahmen der Arbeit entstand ebenfalls ein Singular Paket für konvexe Geometrie, sowie eine Schnittstelle zu Polymake.

The central topic of this thesis is Alperin's weight conjecture, a problem concerning the representation theory of finite groups.
This conjecture, which was first proposed by J. L. Alperin in 1986, asserts that for any finite group the number of its irreducible Brauer characters coincides with the number of conjugacy classes of its weights. The blockwise version of Alperin's conjecture partitions this problem into a question concerning the number of irreducible Brauer characters and weights belonging to the blocks of finite groups.
A proof for this conjecture has not (yet) been found. However, the problem has been reduced to a question on non-abelian finite (quasi-) simple groups in the sense that there is a set of conditions, the so-called inductive blockwise Alperin weight condition, whose verification for all non-abelian finite simple groups implies the blockwise Alperin weight conjecture. Now the objective is to prove this condition for all non-abelian finite simple groups, all of which are known via the classification of finite simple groups.
In this thesis we establish the inductive blockwise Alperin weight condition for three infinite series of finite groups of Lie type: the special linear groups \(SL_3(q)\) in the case \(q>2\) and \(q \not\equiv 1 \bmod 3\), the Chevalley groups \(G_2(q)\) for \(q \geqslant 5\), and Steinberg's triality groups \(^3D_4(q)\).

The work consists of two parts.
In the first part an optimization problem of structures of linear elastic material with contact modeled by Robin-type boundary conditions is considered. The structures model textile-like materials and possess certain quasiperiodicity properties. The homogenization method is used to represent the structures by homogeneous elastic bodies and is essential for formulations of the effective stress and Poisson's ratio optimization problems. At the micro-level, the classical one-dimensional Euler-Bernoulli beam model extended with jump conditions at contact interfaces is used. The stress optimization problem is of a PDE-constrained optimization type, and the adjoint approach is exploited. Several numerical results are provided.
In the second part a non-linear model for simulation of textiles is proposed. The yarns are modeled by hyperelastic law and have no bending stiffness. The friction is modeled by the Capstan equation. The model is formulated as a problem with the rate-independent dissipation, and the basic continuity and convexity properties are investigated. The part ends with numerical experiments and a comparison of the results to a real measurement.

We present a numerical scheme to simulate a moving rigid body with arbitrary shape suspended in a rarefied gas micro flows, in view of applications to complex computations of moving structures in micro or vacuum systems. The rarefied gas is simulated by solving the Boltzmann equation using a DSMC particle method. The motion of the rigid body is governed by the Newton-Euler equations, where the force and the torque on the rigid body is computed from the momentum transfer of the gas molecules colliding with the body. The resulting motion of the rigid body affects in turn again the gas flow in the surroundings. This means that a two-way coupling has been modeled. We validate the scheme by performing various numerical experiments in 1-, 2- and 3-dimensional computational domains. We have presented 1-dimensional actuator problem, 2-dimensional cavity driven flow problem, Brownian diffusion of a spherical particle both with translational and rotational motions, and finally thermophoresis on a spherical particles. We compare the numerical results obtained from the numerical simulations with the existing theories in each test examples.

To write about the history of a subject is a challenge that grows with the number of pages as the original goal of completeness is turning more and more into an impossibility. With this in mind, the present article takes a very narrow approach and uses personal side trips and memories on conferences,
workshops, and summer schools as the stage for some of the most important protagonists and their contributions to the field of Differential-Algebraic Equations (DAEs).

In this dissertation, we discuss how to price American-style options. Our aim is to study and improve the regression-based Monte Carlo methods. In order to have good benchmarks to compare with them, we also study the tree methods.
In the second chapter, we investigate the tree methods specifically. We do research firstly within the Black-Scholes model and then within the Heston model. In the Black-Scholes model, based on Müller's work, we illustrate how to price one dimensional and multidimensional American options, American Asian options, American lookback options, American barrier options and so on. In the Heston model, based on Sayer's research, we implement his algorithm to price one dimensional American options. In this way, we have good benchmarks of various American-style options and put them all in the appendix.
In the third chapter, we focus on the regression-based Monte Carlo methods theoretically and numerically. Firstly, we introduce two variations, the so called "Tsitsiklis-Roy method" and the "Longstaff-Schwartz method". Secondly, we illustrate the approximation of American option by its Bermudan counterpart. Thirdly we explain the source of low bias and high bias. Fourthly we compare these two methods using in-the-money paths and all paths. Fifthly, we examine the effect using different number and form of basis functions. Finally, we study the Andersen-Broadie method and present the lower and upper bounds.
In the fourth chapter, we study two machine learning techniques to improve the regression part of the Monte Carlo methods: Gaussian kernel method and kernel-based support vector machine. In order to choose a proper smooth parameter, we compare fixed bandwidth, global optimum and suboptimum from a finite set. We also point out that scaling the training data to [0,1] can avoid numerical difficulty. When out-of-sample paths of stock prices are simulated, the kernel method is robust and even performs better in several cases than the Tsitsiklis-Roy method and the Longstaff-Schwartz method. The support vector machine can keep on improving the kernel method and needs less representations of old stock prices during prediction of option continuation value for a new stock price.
In the fifth chapter, we switch to the hardware (FGPA) implementation of the Longstaff-Schwartz method and propose novel reversion formulas for the stock price and volatility within the Black-Scholes and Heston models. The test for this formula within the Black-Scholes model shows that the storage of data is reduced and also the corresponding energy consumption.

Lithium-ion batteries are increasingly becoming an ubiquitous part of our everyday life - they are present in mobile phones, laptops, tools, cars, etc. However, there are still many concerns about their longevity and their safety. In this work we focus on the simulation of several degradation mechanisms on the microscopic scale, where one can resolve the active materials inside the electrodes of the lithium-ion batteries as porous structures. We mainly study two aspects - heat generation and mechanical stress. For the former we consider an electrochemical non-isothermal model on the spatially resolved porous scale to observe the temperature increase inside a battery cell, as well as to observe the individual heat sources to assess their contributions to the total heat generation. As a result from our experiments, we determined that the temperature has very small spatial variance for our test cases and thus allows for an ODE formulation of the heat equation.
The second aspect that we consider is the generation of mechanical stress as a result of the insertion of lithium ions in the electrode materials. We study two approaches - using small strain models and finite strain models. For the small strain models, the initial geometry and the current geometry coincide. The model considers a diffusion equation for the lithium ions and equilibrium equation for the mechanical stress. First, we test a single perforated cylindrical particle using different boundary conditions for the displacement and with Neumann boundary conditions for the diffusion equation. We also test for cylindrical particles, but with boundary conditions for the diffusion equation in the electrodes coming from an isothermal electrochemical model for the whole battery cell. For the finite strain models we take in consideration the deformation of the initial geometry as a result of the intercalation and the mechanical stress. We compare two elastic models to study the sensitivity of the predicted elastic behavior on the specific model used. We also consider a softening of the active material dependent on the concentration of the lithium ions and using data for silicon electrodes. We recover the general behavior of the stress from known physical experiments.
Some models, like the mechanical models we use, depend on the local values of the concentration to predict the mechanical stress. In that sense we perform a short comparative study between the Finite Element Method with tetrahedral elements and the Finite Volume Method with voxel volumes for an isothermal electrochemical model.
The spatial discretizations of the PDEs are done using the Finite Element Method. For some models we have discontinuous quantities where we adapt the FEM accordingly. The time derivatives are discretized using the implicit Backward Euler method. The nonlinear systems are linearized using the Newton method. All of the discretized models are implemented in a C++ framework developed during the thesis.

Lithium-ion batteries are broadly used nowadays in all kinds of portable electronics, such as laptops, cell phones, tablets, e-book readers, digital cameras, etc. They are preferred to other types of rechargeable batteries due to their superior characteristics, such as light weight and high energy density, no memory effect, and a big number of charge/discharge cycles. The high demand and applicability of Li-ion batteries naturally give rise to the unceasing necessity of developing better batteries in terms of performance and lifetime. The aim of the mathematical modelling of Li-ion batteries is to help engineers test different battery configurations and electrode materials faster and cheaper. Lithium-ion batteries are multiscale systems. A typical Li-ion battery consists of multiple connected electrochemical battery cells. Each cell has two electrodes - anode and cathode, as well as a separator between them that prevents a short circuit.
Both electrodes have porous structure composed of two phases - solid and electrolyte. We call macroscale the lengthscale of the whole electrode and microscale - the lengthscale at which we can distinguish the complex porous structure of the electrodes. We start from a Li-ion battery model derived on the microscale. The model is based on nonlinear diffusion type of equations for the transport of Lithium ions and charges in the electrolyte and in the active material. Electrochemical reactions on the solid-electrolyte interface couple the two phases. The interface kinetics is modelled by the highly nonlinear Butler-Volmer interface conditions. Direct numerical simulations with standard methods, such as the Finite Element Method or Finite Volume Method, lead to ill-conditioned problems with a huge number of degrees of freedom which are difficult to solve. Therefore, the aim of this work is to derive upscaled models on the lengthscale of the whole electrode so that we do not have to resolve all the small-scale features of the porous microstructure thus reducing the computational time and cost. We do this by applying two different upscaling techniques - the Asymptotic Homogenization Method and the Multiscale Finite Element Method (MsFEM). We consider the electrolyte and the solid as two self-complementary perforated domains and we exploit this idea with both upscaling methods. The first method is restricted only to periodic media and periodically oscillating solutions while the second method can be applied to randomly oscillating solutions and is based on the Finite Element Method framework. We apply the Asymptotic Homogenization Method to derive a coupled macro-micro upscaled model under the assumption of periodic electrode microstructure. A crucial step in the homogenization procedure is the upscaling of the Butler-Volmer interface conditions. We rigorously determine the asymptotic order of the interface exchange current densities and we perform a comprehensive numerical study in order to validate the derived homogenized Li-ion battery model. In order to upscale the microscale battery problem in the case of random electrode microstructure we apply the MsFEM, extended to problems in perforated domains with Neumann boundary conditions on the holes. We conduct a detailed numerical investigation of the proposed algorithm and we show numerical convergence of the method that we design. We also apply the developed technique to a simplified two-dimensional Li-ion battery problem and we show numerical convergence of the solution obtained with the MsFEM to the reference microscale one.

In this thesis we present a new method for nonlinear frequency response analysis of mechanical vibrations.
For an efficient spatial discretization of nonlinear partial differential equations of continuum mechanics we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of exact geometry representation and higher accuracy of numerical approximations using spline functions.
For computing nonlinear frequency response to periodic external excitations, we rely on the well-established harmonic balance method. It expands the solution of the nonlinear ordinary differential equation system resulting from spatial discretization as a truncated Fourier series in the frequency domain.
A fundamental aspect for enabling large-scale and industrial application of the method is model order reduction of the spatial discretization of the equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. We investigate the concept of modal derivatives theoretically and using computational examples we demonstrate the applicability and accuracy of the reduction method for nonlinear static computations and vibration analysis.
Furthermore, we extend nonlinear vibration analysis to incompressible elasticity using isogeometric mixed finite element methods.

We propose and study a strongly coupled PDE-ODE system with tissue-dependent degenerate diffusion and haptotaxis that can serve as a model prototype for cancer cell invasion through the
extracellular matrix. We prove the global existence of weak solutions and illustrate the model behaviour by numerical simulations for a two-dimensional setting.