## Fachbereich Mathematik

In traditional portfolio optimization under the threat of a crash the investment horizon or time to maturity is neglected. Developing the so-called crash hedging strategies (which are portfolio strategies which make an investor indifferent to the occurrence of an uncertain (down) jumps of the price of the risky asset) the time to maturity turns out to be essential. The crash hedging strategies are derived as solutions of non-linear differential equations which itself are consequences of an equilibrium strategy. Hereby the situation of changing market coefficients after a possible crash is considered for the case of logarithmic utility as well as for the case of general utility functions. A benefit-cost analysis of the crash hedging strategy is done as well as a comparison of the crash hedging strategy with the optimal portfolio strategies given in traditional crash models. Moreover, it will be shown that the crash hedging strategies optimize the worst-case bound for the expected utility from final wealth subject to some restrictions. Another application is to model crash hedging strategies in situations where both the number and the height of the crash are uncertain but bounded. Taking the additional information of the probability of a possible crash happening into account leads to the development of the q-quantile crash hedging strategy.

This thesis deals with 3 important aspects of optimal investment in real-world financial markets: taxes, crashes, and illiquidity. An introductory chapter reviews the portfolio problem in its historical context and motivates the theme of this work: We extend the standard modelling framework to include specific real-world features and evaluate their significance. In the first chapter, we analyze the optimal portfolio problem with capital gains taxes, assuming that taxes are deferred until the end of the investment horizon. The problem is solved with the help of a modification of the classical martingale method. The second chapter is concerned with optimal asset allocation under the threat of a financial market crash. The investor takes a worst-case attitude towards the crash, so her investment objective is to be best off in the most adverse crash scenario. We first survey the existing literature on the worst-case approach to optimal investment and then present in detail the novel martingale approach to worst-case portfolio optimization. The first part of this chapter is based on joint work with Ralf Korn. In the last chapter, we investigate optimal portfolio decisions in the presence of illiquidity. Illiquidity is understood as a period in which it is impossible to trade on financial markets. We use dynamic programming techniques in combination with abstract convergence results to solve the corresponding optimal investment problem. This chapter is based on joint work with Holger Kraft and Peter Diesinger.

In the classical Merton investment problem of maximizing the expected utility from terminal wealth and intermediate consumption stock prices are independent of the investor who is optimizing his investment strategy. This is reasonable as long as the considered investor is small and thus does not influence the asset prices. However for an investor whose actions may affect the financial market the framework of the classical investment problem turns out to be inappropriate. In this thesis we provide a new approach to the field of large investor models. We study the optimal investment problem of a large investor in a jump-diffusion market which is in one of two states or regimes. The investor’s portfolio proportions as well as his consumption rate affect the intensity of transitions between the different regimes. Thus the investor is ’large’ in the sense that his investment decisions are interpreted by the market as signals: If, for instance, the large investor holds 25% of his wealth in a certain asset then the market may regard this as evidence for the corresponding asset to be priced incorrectly, and a regime shift becomes likely. More specifically, the large investor as modeled here may be the manager of a big mutual fund, a big insurance company or a sovereign wealth fund, or the executive of a company whose stocks are in his own portfolio. Typically, such investors have to disclose their portfolio allocations which impacts on market prices. But even if a large investor does not disclose his portfolio composition as it is the case of several hedge funds then the other market participants may speculate about the investor’s strategy which finally could influence the asset prices. Since the investor’s strategy only impacts on the regime shift intensities the asset prices do not necessarily react instantaneously. Our model is a generalization of the two-states version of the Bäuerle-Rieder model. Hence as the Bäuerle-Rieder model it is suitable for long investment periods during which market conditions could change. The fact that the investor’s influence enters the intensities of the transitions between the two states enables us to solve the investment problem of maximizing the expected utility from terminal wealth and intermediate consumption explicitly. We present the optimal investment strategy for a large investor with CRRA utility for three different kinds of strategy-dependent regime shift intensities – constant, step and affine intensity functions. In each case we derive the large investor’s optimal strategy in explicit form only dependent on the solution of a system of coupled ODEs of which we show that it admits a unique global solution. The thesis is organized as follows. In Section 2 we repeat the classical Merton investment problem of a small investor who does not influence the market. Further the Bäuerle-Rieder investment problem in which the market states follow a Markov chain with constant transition intensities is discussed. Section 3 introduces the aforementioned investment problem of a large investor. Besides the mathematical framework and the HJB-system we present a verification theorem that is necessary to verify the optimality of the solutions to the investment problem that we derive later on. The explicit derivation of the optimal investment strategy for a large investor with power utility is given in Section 4. For three kinds of intensity functions – constant, step and affine – we give the optimal solution and verify that the corresponding ODE-system admits a unique global solution. In case of the strategy-dependent intensity functions we distinguish three particular kinds of this dependency – portfolio-dependency, consumption-dependency and combined portfolio- and consumption-dependency. The corresponding results for an investor having logarithmic utility are shown in Section 5. In the subsequent Section 6 we consider the special case of a market consisting of only two correlated stocks besides the money market account. We analyze the investor’s optimal strategy when only the position in one of those two assets affects the market state whereas the position in the other asset is irrelevant for the regime switches. Various comparisons of the derived investment problems are presented in Section 7. Besides the comparisons of the particular problems with each other we also dwell on the sensitivity of the solution concerning the parameters of the intensity functions. Finally we consider the loss the large investor had to face if he neglected his influence on the market. In Section 8 we conclude the thesis.

In this work, we develop a framework for analyzing an executive’s own- company stockholding and work effort preferences. The executive, character- ized by risk aversion and work effectiveness parameters, invests his personal wealth without constraint in the financial market, including the stock of his own company whose value he can directly influence with work effort. The executive’s utility-maximizing personal investment and work effort strategy is derived in closed form for logarithmic and power utility and for exponential utility for the case of zero interest rates. Additionally, a utility indifference rationale is applied to determine his fair compensation. Being unconstrained by performance contracting, the executive’s work effort strategy establishes a base case for theoretical or empirical assessment of the benefits or otherwise of constraining executives with performance contracting. Further, we consider a highly-qualified individual with respect to her choice between two distinct career paths. She can choose between a mid-level management position in a large company and an executive position within a smaller listed company with the possibility to directly affect the company’s share price. She invests in the financial market including the share of the smaller listed company. The utility maximizing strategy from consumption, investment, and work effort is derived in closed form for logarithmic utility and power utility. Conditions for the individual to pursue her career with the smaller listed company are obtained. The participation constraint is formulated in terms of the salary differential between the two positions. The smaller listed company can offer less salary. The salary shortfall is offset by the possibilityto benefit from her work effort by acquiring own-company shares. This givesinsight into aspects of optimal contract design. Our framework is applicable to the pharmaceutical and financial industry, as well as the IT sector.

Das zinsoptimierte Schuldenmanagement hat zum Ziel, eine möglichst effiziente Abwägung zwischen den erwarteten Finanzierungskosten einerseits und den Risiken für den Staatshaushalt andererseits zu finden. Um sich diesem Spannungsfeld zu nähern, schlagen wir erstmals die Brücke zwischen den Problemstellungen des Schuldenmanagements und den Methoden der zeitkontinuierlichen, dynamischen Portfoliooptimierung.
Das Schlüsselelement ist dabei eine neue Metrik zur Messung der Finanzierungskosten, die Perpetualkosten. Diese spiegeln die durchschnittlichen zukünftigen Finanzierungskosten wider und beinhalten sowohl die bereits bekannten Zinszahlungen als auch die noch unbekannten Kosten für notwendige Anschlussfinanzierungen. Daher repräsentiert die Volatilität der Perpetualkosten auch das Risiko einer bestimmten Strategie; je langfristiger eine Finanzierung ist, desto kleiner ist die Schwankungsbreite der Perpetualkosten.
Die Perpetualkosten ergeben sich als Produkt aus dem Barwert eines Schuldenportfolios und aus der vom Portfolio unabhängigen Perpetualrate. Für die Modellierung des Barwertes greifen wir auf das aus der dynamischen Portfoliooptimierung bekannte Konzept eines selbstfinanzierenden Bondportfolios zurück, das hier auf einem mehrdimensionalen affin-linearen Zinsmodell basiert. Das Wachstum des Schuldenportfolios wird dabei durch die Einbeziehung des Primärüberschusses des Staates gebremst bzw. verhindert, indem wir diesen als externen Zufluss in das selbstfinanzierende Modell aufnehmen.
Wegen der Vielfältigkeit möglicher Finanzierungsinstrumente wählen wir nicht deren Wertanteile als Kontrollvariable, sondern kontrollieren die Sensitivitäten des Portfolios gegenüber verschiedenen Zinsbewegungen. Aus optimalen Sensitivitäten können in einem nachgelagerten Schritt dann optimale Wertanteile für verschiedenste Finanzierungsinstrumente abgeleitet werden. Beispielhaft demonstrieren wir dies mittels Rolling-Horizon-Bonds unterschiedlicher Laufzeit.
Schließlich lösen wir zwei Optimierungsprobleme mit Methoden der stochastischen Kontrolltheorie. Dabei wird stets der erwartete Nutzen der Perpetualkosten maximiert. Die Nutzenfunktionen sind jeweils an das Schuldenmanagement angepasst und zeichnen sich insbesondere dadurch aus, dass höhere Kosten mit einem niedrigeren Nutzen einhergehen. Im ersten Problem betrachten wir eine Potenznutzenfunktion mit konstanter relativer Risikoaversion, im zweiten wählen wir eine Nutzenfunktion, welche die Einhaltung einer vorgegebenen Schulden- bzw. Kostenobergrenze garantiert.