## Fachbereich Mathematik

### Refine

#### Year of publication

#### Document Type

- Preprint (604)
- Doctoral Thesis (227)
- Report (121)
- Article (31)
- Diploma Thesis (25)
- Lecture (19)
- Master's Thesis (5)
- Part of a Book (4)
- Study Thesis (4)
- Working Paper (4)

#### Keywords

- Wavelet (14)
- Inverses Problem (12)
- Mehrskalenanalyse (12)
- Modellierung (12)
- Mathematikunterricht (9)
- praxisorientiert (9)
- Approximation (8)
- Boltzmann Equation (8)
- Mathematische Modellierung (8)
- Regularisierung (8)

#### Faculty / Organisational entity

- Fachbereich Mathematik (1048)
- Fraunhofer (ITWM) (2)

This paper considers the numerical solution of a transmission boundary-value problem for the time-harmonic Maxwell equations with the help of a special finite volume discretization. Applying this technique to several three-dimensional test problems, we obtain large, sparse, complex linear systems, which are solved by using BiCG, CGS, BiCGSTAB resp., GMRES. We combine these methods with suitably chosen preconditioning matrices and compare the speed of convergence.

Destructive diseases of the lung like lung cancer or fibrosis are still often lethal. Also in case of fibrosis in the liver, the only possible cure is transplantation.
In this thesis, we investigate 3D micro computed synchrotron radiation (SR\( \mu \)CT) images of capillary blood vessels in mouse lungs and livers. The specimen show so-called compensatory lung growth as well as different states of pulmonary and hepatic fibrosis.
During compensatory lung growth, after resecting part of the lung, the remaining part compensates for this loss by extending into the empty space. This process is accompanied by an active vessel growing.
In general, the human lung can not compensate for such a loss. Thus, understanding this process in mice is important to improve treatment options in case of diseases like lung cancer.
In case of fibrosis, the formation of scars within the organ's tissue forces the capillary vessels to grow to ensure blood supply.
Thus, the process of fibrosis as well as compensatory lung growth can be accessed by considering the capillary architecture.
As preparation of 2D microscopic images is faster, easier, and cheaper compared to SR\( \mu \)CT images, they currently form the basis of medical investigation. Yet, characteristics like direction and shape of objects can only properly be analyzed using 3D imaging techniques. Hence, analyzing SR\( \mu \)CT data provides valuable additional information.
For the fibrotic specimen, we apply image analysis methods well-known from material science. We measure the vessel diameter using the granulometry distribution function and describe the inter-vessel distance by the spherical contact distribution. Moreover, we estimate the directional distribution of the capillary structure. All features turn out to be useful to characterize fibrosis based on the deformation of capillary vessels.
It is already known that the most efficient mechanism of vessel growing forms small torus-shaped holes within the capillary structure, so-called intussusceptive pillars. Analyzing their location and number strongly contributes to the characterization of vessel growing. Hence, for all three applications, this is of great interest. This thesis provides the first algorithm to detect intussusceptive pillars in SR\( \mu \)CT images. After segmentation of raw image data, our algorithm works automatically and allows for a quantitative evaluation of a large amount of data.
The analysis of SR\( \mu \)CT data using our pillar algorithm as well as the granulometry, spherical contact distribution, and directional analysis extends the current state-of-the-art in medical studies. Although it is not possible to replace certain 3D features by 2D features without losing information, our results could be used to examine 2D features approximating the 3D findings reasonably well.

The various uses of fiber-reinforced composites, for example in the enclosures of planes, boats and cars, generates the demand for a detailed analysis of these materials. The final goal is to optimize fibrous materials by the means of “virtual material design”. New fibrous materials are virtually created as realizations of a stochastic model and evaluated with physical simulations. In that way, materials can be optimized for specific use cases, without constructing expensive prototypes or performing mechanical experiments. In order to design a practically fabricable material, the stochastic model is first adapted to an existing material and then slightly modified. The virtual reconstruction of the existing material requires a precise knowledge of the geometry of its microstructure. The first part of this thesis describes a fiber quantification method by the means of local measurements of the fiber radius and orientation. The combination of a sparse chord length transform and inertia moments leads to an efficient and precise new algorithm. It outperforms existing approaches with the possibility to treat different fiber radii within one sample, with high precision in continuous space and comparably fast computing time. This local quantification method can be directly applied on gray value images by adapting the directional distance transforms on gray values. In this work, several approaches of this kind are developed and evaluated. Further characterization of the fiber system requires a segmentation of each single fiber. Using basic morphological operators with specific structuring elements, it is possible to derive a probability for each pixel describing if the pixel belongs to a fiber core in a region without overlapping fibers. Tracking high probabilities leads to a partly reconstruction of the fiber cores in non crossing regions. These core parts are then reconnected over critical regions, if they fulfill certain conditions ensuring the affiliation to the same fiber. In the second part of this work, we develop a new stochastic model for dense systems of non overlapping fibers with a controllable level of bending. Existing approaches in the literature have at least one weakness in either achieving high volume fractions, producing non overlapping fibers, or controlling the bending or the orientation distribution. This gap can be bridged by our stochastic model, which operates in two steps. Firstly, a random walk with the multivariate von Mises-Fisher orientation distribution defines bent fibers. Secondly, a force-biased packing approach arranges them in a non overlapping configuration. Furthermore, we provide the estimation of all parameters needed for the fitting of this model to a real microstructure. Finally, we simulate the macroscopic behavior of different microstructures to derive their mechanical and thermal properties. This part is mostly supported by existing software and serves as a summary of physical simulation applied to random fiber systems. The application on a glass fiber reinforced polymer proves the quality of the reconstruction by our stochastic model, as the effective properties match for both the real microstructure and the realizations of the fitted model. This thesis includes all steps to successfully perform virtual material design on various data sets. With novel and efficient algorithms it contributes to the science of analysis and modeling of fiber reinforced materials.

We have presented here a two-dimensional kinetical scheme for equations governing the motion of a compressible flow of an ideal gas (air) based on the Kaniel method. The basic flux functions are computed analytically and have been used in the organization of the flux computation. The algorithm is implemented and tested for the 1D shock and 2D shock-obstacle interaction problems.

The classic approach in robust optimization is to optimize the solution with respect to the worst case scenario. This pessimistic approach yields solutions that perform best if the worst scenario happens, but also usually perform bad on average. A solution that optimizes the average performance on the other hand lacks in worst-case performance guarantee.
In practice it is important to find a good compromise between these two solutions. We propose to deal with this problem by considering it from a bicriteria perspective. The Pareto curve of the bicriteria problem visualizes exactly how costly it is to ensure robustness and helps to choose the solution with the best balance between expected and guaranteed performance.
Building upon a theoretical observation on the structure of Pareto solutions for problems with polyhedral feasible sets, we present a column generation approach that requires no direct solution of the computationally expensive worst-case problem. In computational experiments we demonstrate the effectivity of both the proposed algorithm, and the bicriteria perspective in general.

We consider the problem of evacuating a region with the help of buses. For a given set of possible collection points where evacuees gather, and possible shelter locations where evacuees are brought to, we need to determine both collection points and shelters we would like to use, and bus routes that evacuate the region in minimum time.
We model this integrated problem using an integer linear program, and present a branch-cut-and-price algorithm that generates bus tours in its pricing step. In computational experiments we show that our approach is able to solve instances of realistic size in sufficient time for practical application, and considerably outperforms the usage of a generic ILP solver.

In this paper we give the definition of a solution concept in multicriteria combinatorial optimization. We show how Pareto, max-ordering and lexicographically optimal solutions can be incorporated in this framework. Furthermore we state some properties of lexicographic max-ordering solutions, which combine features of these three kinds of optimal solutions. Two of these properties, which are desirable from a decision maker" s point of view, are satisfied if and only of the solution concept is that of lexicographic max-ordering.

In this paper we develop a data-driven mixture of vector autoregressive models with exogenous components. The process is assumed to change regimes according to an underlying Markov process. In contrast to the hidden Markov setup, we allow the transition probabilities of the underlying Markov process to depend on past time series values and exogenous variables. Such processes have potential applications to modeling brain signals. For example, brain activity at time t (measured by electroencephalograms) will can be modeled as a function of both its past values as well as exogenous variables (such as visual or somatosensory stimuli). Furthermore, we establish stationarity, geometric ergodicity and the existence of moments for these processes under suitable conditions on the parameters of the model. Such properties are important for understanding the stability properties of the model as well as deriving the asymptotic behavior of various statistics and model parameter estimators.

Let \(a_1,\dots,a_n\) be independent random points in \(\mathbb{R}^d\) spherically symmetrically but not necessarily identically distributed. Let \(X\) be the random polytope generated as the convex hull of \(a_1,\dots,a_n\) and for any \(k\)-dimensional subspace \(L\subseteq \mathbb{R}^d\) let \(Vol_L(X) :=\lambda_k(L\cap X)\) be the volume of \(X\cap L\) with respect to the \(k\)-dimensional Lebesgue measure \(\lambda_k, k=1,\dots,d\). Furthermore, let \(F^{(i)}\)(t):= \(\bf{Pr}\) \(\)(\(\Vert a_i \|_2\leq t\)),
\(t \in \mathbb{R}^+_0\) , be the radial distribution function of \(a_i\). We prove that the expectation
functional \(\Phi_L\)(\(F^{(1)}, F^{(2)},\dots, F^{(n)})\) := \(E(Vol_L(X)\)) is strictly decreasing in
each argument, i.e. if \(F^{(i)}(t) \le G^{(i)}(t)t\), \(t \in {R}^+_0\), but \(F^{(i)} \not\equiv G^{(i)}\), we show \(\Phi\) \((\dots, F^{(i)}, \dots\)) > \(\Phi(\dots,G^{(i)},\dots\)). The proof is clone in the more general framework
of continuous and \(f\)- additive polytope functionals.

Treating polyatomic gases in kinetic gas theory requires an appropriate molecule model taking into account the additional internal structure of the gas particles. In this paper we describe two such models, each arising from quite different approaches to this problem. A simulation scheme for solving the corresponding kinetic equations is presented and some numerical results to 1D shockwaves are compared.

Simulation methods like DSMC are an efficient tool to compute rarefied gas flows. Using supercomputers it is possible to include various real gas effects like vibrational energies or chemical reactions in a gas mixture. Nevertheless it is still necessary to improve the accuracy of the current simulation methods in order to reduce the computational effort. To support this task the paper presents a comparison of the classical DSMC method with the so called finite Pointset Method. This new approach was developed during several years in the framework of the European space project HERMES. The comparison given in the paper is based on two different testcases: a spatially homogeneous relaxation problem and a 2-dimensional axisymmetric flow problem at high Mach numbers.

We consider the problem of evacuating an urban area caused by a natural or man-made disaster. There are several planning aspects that need to be considered in such a scenario, which are usually considered separately, due to their computational complexity. These aspects include: Which shelters are used to accommodate evacuees? How to schedule public transport for transit-dependent evacuees? And how do public and individual traffic interact? Furthermore, besides evacuation time, also the risk of the evacuation needs to be considered.
We propose a macroscopic multi-criteria optimization model that includes all of these questions simultaneously. As a mixed-integer programming formulation cannot handle instances of real-world size, we develop a genetic algorithm of NSGA-II type that is able to generate feasible solutions of good quality in reasonable computation times.
We extend the applicability of these methods by also considering how to aggregate instance data, and how to generate solutions for the original instance starting from a reduced solution.
In computational experiments using real-world data modelling the cities of Nice in France and Kaiserslautern in Germany, we demonstrate the effectiveness of our approach and compare the trade-off between different levels of data aggregation.

In this article we give a sufficient condition that a simply connected flexible body does not penetrate itself, if it is subjected to a continuous deformation. It is shown that the deformation map is automatically injective, if it is just locally injective and injective on the boundary of the body. Thereby, it is very remarkable that no higher regularity assumption than continuity for the deformation map is required. The proof exclusively relies on homotopy methods and the Jordan-Brouwer separation theorem.

The notion of Q-Gorenstein smoothings has been introduced by Kollar. ([KoJ], 6.2.3). This notion is essential for formulating Kollar's conjectures on smoothing components for rational surface singularities. He conjectures, loosely speaking, that every smoothing of a rational surface singularity can be obtained by blowing down a deformation of a partial resolution, this partial resolution having the property (among others) that the singularities occuring on it all have qG-smoothings. (For more details and precise statements see [Ko], ch. 6.). It is therefore of interest to construct singularities having qG-smoothings.

A new algorithm for optimization problems with three objective functions is presented which computes a representation for the set of nondominated points. This representation is guaranteed to have a desired coverage error and a bound on the number of iterations needed by the algorithm to meet this coverage error is derived. Since the representation does not necessarily contain nondominated points only, ideas to calculate bounds for the representation error are given. Moreover, the incorporation of domination during the algorithm and other quality measures are discussed.

We present a deterministic simulation scheme for the Boltzmann Semiconductor Equation. The convergence of the method is shown for a simplified space homogeneous case. Numerical experiments, which are very promising, are also given in this situation. The extension for the application to the space inhomogeneous equation with a self consistent electric field is quoted. Theoretical considerations in that case are in preparation.

Many discrepancy principles are known for choosing the parameter \(\alpha\) in the regularized operator equation \((T^*T+ \alpha I)x_\alpha^\delta = T^*y^\delta\), \(||y-y^d||\leq \delta\), in order to approximate the minimal norm least-squares solution of the operator equation \(Tx=y\). In this paper we consider a class of discrepancy principles for choosing the regularization parameter when \(T^*T\) and \(T^*y^\delta\) are approximated by \(A_n\) and \(z_n^\delta\) respectively with \(A_n\) not necessarily self - adjoint. Thisprocedure generalizes the work of Engl and Neubauer (1985),and particular cases of the results are applicable to the regularized projection method as well as to a degenerate kernel method considered by Groetsch (1990).

Compared to conventional techniques in computational fluid dynamics, the lattice Boltzmann method (LBM) seems to be a completely different approach to solve the incompressible Navier-Stokes equations. The aim of this article is to correct this impression by showing the close relation of LBM to two standard methods: relaxation schemes and explicit finite difference discretizations. As a side effect, new starting points for a discretization of the incompressible Navier-Stokes equations are obtained.

A single facility problem in the plane is considered, where an optimal location has to be
identified for each of finitely many time-steps with respect to time-dependent weights and
demand points. It is shown that the median objective can be reduced to a special case of the
static multifacility median problem such that results from the latter can be used to tackle the
dynamic location problem. When using block norms as distance measure between facilities,
a Finite Dominating Set (FDS) is derived. For the special case with only two time-steps, the
resulting algorithm is analyzed with respect to its worst-case complexity. Due to the relation
between dynamic location problems for T time periods and T-facility problems, this algorithm
can also be applied to the static 2-facility location problem.

In continous location problems we are given a set of existing facilities and we are looking for the location of one or several new facilities. In the classical approaches weights are assigned to existing facilities expressing the importance of the new facilities for the existing ones. In this paper, we consider a pointwise defined objective function where the weights are assigned to the existing facilities depending on the location of the new facility. This approach is shown to be a generalization of the median, center and centdian objective functions. In addition, this approach allows to formulate completely new location models. Efficient algorithms as well as structure results for this algebraic approach for location problems are presented. Extensions to the multifacility and restricted case are also considered.

We develop a framework for shape optimization problems under state equation con-
straints where both state and control are discretized by B-splines or NURBS. In other
words, we use isogeometric analysis (IGA) for solving the partial differential equation and a nodal approach to change domains where control points take the place of nodes and where thus a quite general class of functions for representing optimal shapes and their boundaries becomes available. The minimization problem is solved by a gradient descent method where the shape gradient will be defined in isogeometric terms. This
gradient is obtained following two schemes, optimize first–discretize then and, reversely,
discretize first–optimize then. We show that for isogeometric analysis, the two schemes yield the same discrete system. Moreover, we also formulate shape optimization with respect to NURBS in the optimize first ansatz which amounts to finding optimal control points and weights simultaneously. Numerical tests illustrate the theory.

Facility Location Problems are concerned with the optimal location of one or several new facilities, with respect to a set of existing ones. The objectives involve the distance between new and existing facilities, usually a weighted sum or weighted maximum. Since the various stakeholders (decision makers) will have different opinions of the importance of the existing facilities, a multicriteria problem with several sets of weights, and thus several objectives, arises. In our approach, we assume the decision makers to make only fuzzy comparisons of the different existing facilities. A geometric mean method is used to obtain the fuzzy weights for each facility and each decision maker. The resulting multicriteria facility location problem is solved using fuzzy techniques again. We prove that the final compromise solution is weakly Pareto optimal and Pareto optimal, if it is unique, or under certain assumptions on the estimates of the Nadir point. A numerical example is considered to illustrate the methodology.

A General Hilbert Space Approach to Wavelets and Its Application in Geopotential Determination
(1999)

A general approach to wavelets is presented within a framework of a separable functional Hilbert space H. Basic tool is the construction of H-product kernels by use of Fourier analysis with respect to an orthonormal basis in H. Scaling function and wavelet are defined in terms of H-product kernels. Wavelets are shown to be 'building blocks' that decorrelate the data. A pyramid scheme provides fast computation. Finally, the determination of the earth's gravitational potential from single and multipole expressions is organized as an example of wavelet approximation in Hilbert space structure.

We present a generalization of Proth's theorem for testing certain large integers for primality. The use of Gauß sums leads to a much simpler approach to these primality criteria as compared to the earlier tests. The running time of the algorithms is bounded by a polynomial in the length of the input string. The applicability of our algorithms is linked to certain diophantine approximations of \(l\)-adic roots of unity.

In this paper we consider the problem of optimizing a piecewise-linear objective function over a non-convex domain. In particular we do not allow the solution to lie in the interior of a prespecified region R. We discuss the geometrical properties of this problems and present algorithms based on combinatorial arguments. In addition we show how we can construct quite complicated shaped sets R while maintaining the combinatorial properties.

Numerical Godeaux surfaces are minimal surfaces of general type with the smallest possible numerical invariants. It is known that the torsion group of a numerical Godeaux surface is cyclic of order \(m\leq 5\). A full classification has been given for the cases \(m=3,4,5\) by the work of Reid and Miyaoka. In each case, the corresponding moduli space is 8-dimensional and irreducible.
There exist explicit examples of numerical Godeaux surfaces for the orders \(m=1,2\), but a complete classification for these surfaces is still missing.
In this thesis we present a construction method for numerical Godeaux surfaces which is based on homological algebra and computer algebra and which arises from an experimental approach by Schreyer. The main idea is to consider the canonical ring \(R(X)\) of a numerical Godeaux surface \(X\) as a module over some graded polynomial ring \(S\). The ring \(S\) is chosen so that \(R(X)\) is finitely generated as an \(S\)-module and a Gorenstein \(S\)-algebra of codimension 3. We prove that the canonical ring of any numerical Godeaux surface, considered as an \(S\)-module, admits a minimal free resolution whose middle map is alternating. Moreover, we show that a partial converse of this statement is true under some additional conditions.
Afterwards we use these results to construct (canonical rings of) numerical Godeaux surfaces. Hereby, we restrict our study to surfaces whose bicanonical system has no fixed component but 4 distinct base points, in the following referred to as marked numerical Godeaux surfaces.
The particular interest of this thesis lies on marked numerical Godeaux surfaces whose torsion group is trivial. For these surfaces we study the fibration of genus 4 over \(\mathbb{P}^1\) induced by the bicanonical system. Catanese and Pignatelli showed that the general fibre is non-hyperelliptic and that the number \(\tilde{h}\) of hyperelliptic fibres is bounded by 3. The two explicit constructions of numerical Godeaux surfaces with a trivial torsion group due to Barlow and Craighero-Gattazzo, respectively, satisfy \(\tilde{h} = 2\).
With the method from this thesis, we construct an 8-dimensional family of numerical Godeaux surfaces with a trivial torsion group and whose general element satisfy \(\tilde{h}=0\).
Furthermore, we establish a criterion for the existence of hyperelliptic fibres in terms of a minimal free resolution of \(R(X)\). Using this criterion, we verify experimentally the
existence of a numerical Godeaux surface with \(\tilde{h}=1\).

In this article, we give an explicit homotopy between the solutions (i.e. stress, strain, displacement) of the quasistatic linear elastic and nonlinear elastoplastic boundary value problem, where we assume a linear kinematic hardening material law. We give error estimates with respect to the homotopy parameter.

A way to derive consistently kinetic models for vehicular traffic from microscopic follow the leader models is presented. The obtained class of kinetic equations is investigated. Explicit examples for kinetic models are developed with a particular emphasis on obtaining models, that give realistic results. For space homogeneous traffic flow situations numerical examples are given including stationary distributions and fundamental diagrams.

In this paper the kinetic model for vehicular traffic developed in [3,4] is considered and theoretical results for the space homogeneous kinetic equation are presented. Existence and uniqueness results for the time dependent equation are stated. An investigation of the stationary equation leads to a boundary value problem for an ordinary differential equation. Existence of the solution and some properties are proved. A numerical investigation of the stationary equation is included.

Multiobjective combinatorial optimization problems have received increasing attention in recent years. Nevertheless, many algorithms are still restricted to the bicriteria case. In this paper we propose a new algorithm for computing all Pareto optimal solutions. Our algorithm is based on the notion of level sets and level curves and contains as a subproblem the determination of K best solutions for a single objective combinatorial optimization problem. We apply the method to the Multiobjective Quadratic Assignment Problem (MOQAP). We present two algorithms for ranking QAP solutions and nally give computational results comparing the methods.

It is often helpful to compute the intrinsic volumes of a set of which only a pixel image is observed. A computational efficient approach, which is suggested by several authors and used in practice, is to approximate the intrinsic volumes by a linear functional of the pixel configuration histogram. Here we want to examine, whether there is an optimal way of choosing this linear functional, where we will use a quite natural optimality criterion that has already been applied successfully for the estimation of the surface area. We will see that for intrinsic volumes other than volume or surface area this optimality criterion cannot be used, since estimators which ignore the data and return constant values are optimal w.r.t. this criterion. This shows that one has to be very careful, when intrinsic volumes are approximated by a linear functional of the pixel configuration histogram.

In this article a new numerical solver for simulations of district heating networks is presented. The numerical method applies the local time stepping introduced in [11] to networks of linear advection equations. In combination with the high order approach of [4] an accurate and very efficient scheme is developed. In several numerical test cases the advantages for simulations of district heating networks are shown.

In the Black-Scholes type financial market, the risky asset S 1 ( ) is supposed to satisfy dS 1 ( t ) = S 1 ( t )( b ( t ) dt + Sigma ( t ) dW ( t ) where W ( ) is a Brownian motion. The processes b ( ), Sigma ( ) are progressively measurable with respect to the filtration generated by W ( ). They are known as the mean rate of return and the volatility respectively. A portfolio is described by a progressively measurable processes Pi1 ( ), where Pi1 ( t ) gives the amount invested in the risky asset at the time t. Typically, the optimal portfolio Pi1 ( ) (that, which maximizes the expected utility), depends at the time t, among other quantities, on b ( t ) meaning that the mean rate of return shall be known in order to follow the optimal trading strategy. However, in a real-world market, no direct observation of this quantity is possible since the available information comes from the behavior of the stock prices which gives a noisy observation of b ( ). In the present work, we consider the optimal portfolio selection which uses only the observation of stock prices.

In the filling process of a car tank, the formation of foam plays an unwanted role, as it may prevent the tank from being completely filled or at least delay the filling. Therefore it is of interest to optimize the geometry of the tank using numerical simulation in such a way that the influence of the foam is minimized. In this dissertation, we analyze the behaviour of the foam mathematically on the mezoscopic scale, that is for single lamellae. The most important goals are on the one hand to gain a deeper understanding of the interaction of the relevant physical effects, on the other hand to obtain a model for the simulation of the decay of a lamella which can be integrated in a global foam model. In the first part of this work, we give a short introduction into the physical properties of foam and find that the Marangoni effect is the main cause for its stability. We then develop a mathematical model for the simulation of the dynamical behaviour of a lamella based on an asymptotic analysis using the special geometry of the lamella. The result is a system of nonlinear partial differential equations (PDE) of third order in two spatial and one time dimension. In the second part, we analyze this system mathematically and prove an existence and uniqueness result for a simplified case. For some special parameter domains the system can be further simplified, and in some cases explicit solutions can be derived. In the last part of the dissertation, we solve the system using a finite element approach and discuss the results in detail.

The performance of napkins is nowadays improved substantially by embedding granules of a superabsorbent into the cellulose matrix. In this paper a continuous model for the liquid transport in such an Ultra Napkin is proposed. Its mean feature is a nonlinear diffusion equation strongly coupled with an ODE describing a reversible absorbtion process. An efficient numerical method based on a symmetrical time splitting and a finite difference scheme of ADI-predictor-corrector type has been developed to solve these equations in a three dimensional setting. Numerical results are presented that can be used to optimize the granule distribution.

It is of basic interest to assess the quality of the decisions of a statistician, based on the outcoming data of a statistical experiment, in the context of a given model class P of probability distributions. The statistician picks a particular distribution P , suffering a loss by not picking the 'true' distribution P' . There are several relevant loss functions, one being based on the the relative entropy function or Kullback Leibler information distance. In this paper we prove a general 'minimax risk equals maximin (Bayes) risk' theorem for the Kullback Leibler loss under the hypothesis of a dominated and compact family of distributions over a Polish observation space with suitably integrable densities. We also find that there is always an optimal Bayes strategy (i.e. a suitable prior) achieving the minimax value. Further, we see that every such minimax optimal strategy leads to the same distribution P in the convex closure of the model class. Finally, we give some examples to illustrate the results and to indicate, how the minimax result reflects in the structure of least favorable priors. This paper is mainly based on parts of this author's doctorial thesis.

The original publication is available at www.springerlink.com. This original publication also contains further results. We study a spherical wave propagating in radius- and latitude-direction and oscillating in latitude-direction in case of fibre-reinforced linearly elastic material. A function system solving Euler's equation of motion in this case and depending on certain Bessel and associated Legendre functions is derived.

Cloudy inhomogenities in artificial fabrics are graded by a fast method which is based on a Laplacian pyramid decomposition of the fabric image. This band-pass representation takes into account the scale character of the cloudiness. A quality measure of the entire cloudiness is obtained as a weighted mean over the variances of all scales.

A Multi-Phase Flow Model Incorporated with Population Balance Equation in a Meshfree Framework
(2011)

This study deals with the numerical solution of a meshfree coupled model of Computational Fluid Dynamics (CFD) and Population Balance Equation (PBE) for liquid-liquid extraction columns. In modeling the coupled hydrodynamics and mass transfer in liquid extraction columns one encounters multidimensional population balance equation that could not be fully resolved numerically within a reasonable time necessary for steady state or dynamic simulations. For this reason, there is an obvious need for a new liquid extraction model that captures all the essential physical phenomena and still tractable from computational point of view. This thesis discusses a new model which focuses on discretization of the external (spatial) and internal coordinates such that the computational time is drastically reduced. For the internal coordinates, the concept of the multi-primary particle method; as a special case of the Sectional Quadrature Method of Moments (SQMOM) is used to represent the droplet internal properties. This model is capable of conserving the most important integral properties of the distribution; namely: the total number, solute and volume concentrations and reduces the computational time when compared to the classical finite difference methods, which require many grid points to conserve the desired physical quantities. On the other hand, due to the discrete nature of the dispersed phase, a meshfree Lagrangian particle method is used to discretize the spatial domain (extraction column height) using the Finite Pointset Method (FPM). This method avoids the extremely difficult convective term discretization using the classical finite volume methods, which require a lot of grid points to capture the moving fronts propagating along column height.

A method to correct the elastic stress tensor at a fixed point of an elastoplastic body, which is subject to exterior loads, is presented and analysed. In contrast to uniaxial corrections (Neuber or ESED), our method takes multiaxial phenomena like ratchetting or cyclic hardening/softening into account by use of Jiang's model. Our numerical algorithm is designed for the case that the scalar load functions are piecewise linear and can be used in connection with critical plane/multiaxial rainflow methods in high cycle fatigue analysis. In addition, a local existence and uniqueness result of Jiang's equations is given.

The Multiple Objective Median Problem involves locating a new facility so that a vector of performance criteria is optimized over a given set of existing facilities. A variation of this problem is obtained if the existing facilities are situated on two sides of a linear barrier. Such barriers like rivers, highways, borders, or mountain ranges are frequently encountered in practice. In this paper, theory of the Multiple Objective Median Problem with line barriers is developped. As this problem is nonconvex but specially-structured, a reduction to a series of convex optimization problems is proposed. The general results lead to a polynomial algorithm for finding the set of efficient solutions. The algorithm is proposed for bi-criteria problems with different measures of distance.

Starting from the two-scale model for pH-taxis of cancer cells introduced in [1], we consider here an extension accounting for tumor heterogeneity w.r.t. treatment sensitivity and a treatment approach including chemo- and radiotherapy. The effect of peritumoral region alkalinization on such therapeutic combination is investigated with the aid of numerical simulations.

We propose a model for acid-mediated tumor invasion involving two different scales: the microscopic one, for the dynamics of intracellular protons and their exchange with their extracellular counterparts, and the macroscopic scale of interactions between tumor cell and normal cell populations, along with the evolution of extracellular protons. We also account for the tactic behavior of cancer cells, the latter being assumed to biase their motion according to a gradient of extracellular protons (following [2,31] we call this pH taxis). A time dependent (and also time delayed) carrying capacity for the tumor cells in response to the effects of acidity is considered as well. The global well posedness of the resulting multiscale model is proved with a regularization and fixed point argument. Numerical simulations are performed in order to illustrate the behavior of the model.

We consider the multiscale model for glioma growth introduced in a previous work and extend it to account
for therapy effects. Thereby, three treatment strategies involving surgical resection, radio-, and
chemotherapy are compared for their efficiency. The chemotherapy relies on inhibiting the binding
of cell surface receptors to the surrounding tissue, which impairs both migration and proliferation.

Minmax regret optimization aims at finding robust solutions that perform best in the worst-case, compared to the respective optimum objective value in each scenario. Even for simple uncertainty sets like boxes, most polynomially solvable optimization problems have strongly NP-hard minmax regret counterparts. Thus, heuristics with performance guarantees can potentially be of great value, but only few such guarantees exist.
A very easy but effective approximation technique is to compute the midpoint solution of the original optimization problem, which aims at optimizing the average regret, and also the average nominal objective. It is a well-known result that the regret of the midpoint solution is at most 2 times the optimal regret. Besides some academic instances showing that this bound is tight, most instances reveal a way better approximation ratio.
We introduce a new lower bound for the optimal value of the minmax regret problem. Using this lower bound we state an algorithm that gives an instance dependent performance guarantee of the midpoint solution for combinatorial problems that is at most 2. The computational complexity of the algorithm depends on the minmax regret problem under consideration; we show that the sharpened guarantee can be computed in strongly polynomial time for several classes of combinatorial optimization problems.
To illustrate the quality of the proposed bound, we use it within a branch and bound framework for the robust shortest path problem. In an experimental study comparing this approach with a bound from the literature, we find a considerable improvement in computation times.

Compared to standard numerical methods for hyperbolic systems of conservation laws, Kinetic Schemes model propagation of information by particles instead of waves. In this article, the wave and the particle concept are shown to be closely related. Moreover, a general approach to the construction of Kinetic Schemes for hyperbolic conservation laws is given which summarizes several approaches discussed by other authors. The approach also demonstrates why Kinetic Schemes are particularly well suited for scalar conservation laws and why extensions to general systems are less natural.

Finding a delivery plan for cancer radiation treatment using multileaf collimators operating in ''step-and-shoot mode'' can be formulated mathematically as a problem of decomposing an integer matrix into a weighted sum of binary matrices having the consecutive-ones property - and sometimes other properties related to the collimator technology. The efficiency of the delivery plan is measured by both the sum of weights in the decomposition, known as the total beam-on time, and the number of different binary matrices appearing in it, referred to as the cardinality, the latter being closely related to the set-up time of the treatment. In practice, the total beam-on time is usually restricted to its minimum possible value, (which is easy to find), and a decomposition that minimises cardinality (subject to this restriction) is sought.

This paper presents a new similarity measure and nonlocal filters for images corrupted by multiplicative noise. The considered filters are generalizations of the nonlocal means filter of Buades et al., which is known to be well suited for removing additive Gaussian noise. To adapt to different noise models, the patch comparison involved in this filter has first of all to be performed by a suitable noise dependent similarity measure. To this purpose, we start by studying a probabilistic measure recently proposed for general noise models by Deledalle et al. We analyze this measure in the context of conditional density functions and examine its properties for images corrupted by additive and multiplicative noise. Since it turns out to have unfavorable properties for multiplicative noise we deduce a new similarity measure consisting of a probability density function specially chosen for this type of noise. The properties of our new measure are studied theoretically as well as by numerical experiments. To obtain the final nonlocal filters we apply a weighted maximum likelihood estimation framework, which also incorporates the noise statistics. Moreover, we define the weights occurring in these filters using our new similarity measure and propose different adaptations to further improve the results. Finally, restoration results for images corrupted by multiplicative Gamma and Rayleigh noise are presented to demonstrate the very good performance of our nonlocal filters.

A new solution approach for solving the 2-facility location problem in the plane with block norms
(2015)

Motivated by the time-dependent location problem over T time-periods introduced in
Maier and Hamacher (2015) we consider the special case of two time-steps, which was shown
to be equivalent to the static 2-facility location problem in the plane. Geometric optimality
conditions are stated for the median objective. When using block norms, these conditions
are used to derive a polygon grid inducing a subdivision of the plane based on normal cones,
yielding a new approach to solve the 2-facility location problem in polynomial time. Combinatorial algorithms for the 2-facility location problem based on geometric properties are
deduced and their complexities are analyzed. These methods differ from others as they are
completely working on geometric objects to derive the optimal solution set.

This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier-Stokes equation on the sphere. It extends the work of Debussche, Marion,Shen, Temam et al. from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on type 3 vector spherical harmonics is introduced and convergence is indicated. Further it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-3j coefficients. To improve the numerical efficiency and economy we introduce an FFT based pseudo spectral algorithm for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales with O(N^3), if N denotes the maximal spherical harmonic degree. The latter is demonstrated in an extensive numerical example.

A Nonlinear Ray Theory
(1994)

A proof of the famous Huygens" method of wavefront construction is reviewed and it is shown that the method is embedded in the geometrical optics theory for the calculation of the intensity of the wave based on high frequency approximation. It is then shown that Huygens" method can be extended in a natural way to the construction of a weakly nonlinear wavefront. This is an elegant nonlinear ray theory based on an approximation published by the author in 1975 which was inspired by the work of Gubkin. In this theory, the wave amplitude correction is incorporated in the eikonal equation itself and this leads to a sytem of ray equations coupled to the transport equation. The theory shows that the nonlinear rays stretch due to the wave amplitude, as in the work of Choquet-Bruhat (1969), followed by Hunter, Majda, Keller and Rosales, but in addition the wavefront rotates due to a non-uniform distribution of the amplitude on the wavefront. Thus the amplitude of the wave modifies the rays and the wavefront geometry, which in turn affects the growth and decay of the amplitude. Our theory also shows that a compression nonlinear wavefront may develop a kink but an expansion one always remains smooth. In the end, an exact solution showing the resolution of a linear caustic due to nonlinearity has been presented. The theory incorporates all features of Whitham" s geometrical shock dynamics.

A nonlocal stochastic model for intra- and extracellular proton dynamics in a tumor is proposed.
The intracellular dynamics is governed by an SDE coupled to a reaction-diffusion
equation for the extracellular proton concentration on the macroscale. In a more general context
the existence and uniqueness of solutions for local and nonlocal
SDE-PDE systems are established allowing, in particular, to analyze the proton dynamics model both,
in its local version and the case with nonlocal path dependence.
Numerical simulations are performed
to illustrate the behavior of solutions, providing some insights into the effects of randomness on tumor acidity.

The problem of finding an optimal location X* minimizing the maximum Euclidean distance to existing facilities is well solved by e.g. the Elzinga-Hearn algorithm. In practical situations X* will however often not be feasible. We therefore suggest in this note a polynomial algorithm which will find an optimal location X^F in a feasible subset F of the plane R^2

In this paper, we study the inverse maximum flow problem under \(\ell_\infty\)-norm and show that this problem can be solved by finding a maximum capacity path on a modified graph. Moreover, we consider an extension of the problem where we minimize the number of perturbations among all the optimal solutions of Chebyshev norm. This bicriteria version of the inverse maximum flow problem can also be solved in strongly polynomial time by finding a minimum \(s - t\) cut on the modified graph with a new capacity function.

Groups can be studied using methods from different fields such as combinatorial group theory or string rewriting. Recently techniques from Gröbner basis theory for free monoid rings (non-commutative polynomial rings) respectively free group rings have been added to the set of methods due to the fact that monoid and group presentations (in terms of string rewriting systems) can be linked to special polynomials called binomials. In the same mood, the aim of this paper is to discuss the relation between Nielsen reduced sets of generators and the Todd-Coxeter coset enumeration procedure on the one side and the Gröbner basis theory for free group rings on the other. While it is well-known that there is a strong relationship between Buchberger's algorithm and the Knuth-Bendix completion procedure, and there are interpretations of the Todd-Coxeter coset enumeration procedure using the Knuth-Bendix procedure for special cases, our aim is to show how a verbatim interpretation of the Todd-Coxeter procedure can be obtained by linking recent Gröbner techniques like prefix Gröbner bases and the FGLM algorithm as a tool to study the duality of ideals. As a side product our procedure computes Nielsen reduced generating sets for subgroups in finitely generated free groups.

Linear half-space problems can be used to solve domain decomposition problems between Boltzmann and aerodynamic equations. A new fast numerical method computing the asymptotic states and outgoing distributions for a linearized BGK half-space problem is presented. Relations with the so-called variational methods are discussed. In particular, we stress the connection between these methods and Chapman-Enskog type expansions.

An asymptotic-induced scheme for kinetic semiconductor equations with the diffusion scaling is developed. The scheme is based on the asymptotic analysis of the kinetic semiconductor equation. It works uniformly for all ranges of mean free paths. The velocity discretization is done using quadrature points equivalent to a moment expansion method. Numerical results for different physical situations are presented.

Estimation of P(R kl/gleich S) is considered for the simple stress-strength model of failure. Using the Pareto and Power distributions together with their combined form a useful parametric solution is obtained and is illustrated numerically. It is shown that these models are also applicable when only the tails of distributions for R and S are considered. An application to the failure study concerning the fractures is also included.

For some optimization problems on a graph \(G=(V,E)\), one can give a general formulation: Let \(c\colon E \to \mathbb{R}_{\geq 0}\) be a cost function on the edges and \(X \subseteq 2^E\) be a set of (so-called feasible) subsets of \(E\), one aims to minimize \(\sum_{e\in S} c(e)\) among all feasible \(S\in X\). This formulation covers, for instance, the shortest path problem by choosing \(X\) as the set of all paths between two vertices, or the minimum spanning tree problem by choosing \(X\) to be the set of all spanning trees. This bachelor thesis deals with a parametric version of this formulation, where the edge costs \(c_\lambda\colon E \to \mathbb{R}_{\geq 0}\) depend on a parameter \(\lambda\in\mathbb{R}_{\geq 0}\) in a concave and piecewise linear manner. The goal is to investigate the worst case minimum size of a so-called representation system \(R\subseteq X\), which contains for each scenario \(\lambda\in\mathbb{R}_{\geq 0}\) an optimal solution \(S(\lambda)\in R\). It turns out that only a pseudo-polynomial size can be ensured in general, but smaller systems have to exist in special cases. Moreover, methods are presented to find such small systems algorithmically. Finally, the notion of a representation system is relaxed in order to get smaller (i.e. polynomial) systems ensuring a certain approximation ratio.

The dissertation is concerned with the numerical solution of Fokker-Planck equations in high dimensions arising in the study of dynamics of polymeric liquids. Traditional methods based on tensor product structure are not applicable in high dimensions for the number of nodes required to yield a fixed accuracy increases exponentially with the dimension; a phenomenon often referred to as the curse of dimension. Particle methods or finite point set methods are known to break the curse of dimension. The Monte Carlo method (MCM) applied to such problems are 1/sqrt(N) accurate, where N is the cardinality of the point set considered, independent of the dimension. Deterministic version of the Monte Carlo method called the quasi Monte Carlo method (QMC) are quite effective in integration problems and accuracy of the order of 1/N can be achieved, up to a logarithmic factor. However, such a replacement cannot be carried over to particle simulations due to the correlation among the quasi-random points. The method proposed by Lecot (C.Lecot and F.E.Khettabi, Quasi-Monte Carlo simulation of diffusion, Journal of Complexity, 15 (1999), pp.342-359) is the only known QMC approach, but it not only leads to large particle numbers but also the proven order of convergence is 1/N^(2s) in dimension s. We modify the method presented there, in such a way that the new method works with reasonable particle numbers even in high dimensions and has better order of convergence. Though the provable order of convergence is 1/sqrt(N), the results show less variance and thus the proposed method still slightly outperforms standard MCM.

In this article, we present an analytic solution for Jiang's constitutive model of elastoplasticity. It is considered in its stress controlled form for proportional stress loading under the assumptions that the one-to-one coupling of the yield surface radius and the memory surface radius is switched off, that the transient hardening is neglected and that the ratchetting exponents are constant.

Buses not arriving on time and then arriving all at once - this phenomenon is known from
busy bus routes and is called bus bunching.
This thesis combines the well studied but so far separate areas of bus-bunching prediction
and dynamic holding strategies, which allow to modulate buses’ dwell times at stops to
eliminate bus bunching. We look at real data of the Dublin Bus route 46A and present
a headway-based predictive-control framework considering all components like data
acquisition, prediction and control strategies. We formulate time headways as time series
and compare several prediction methods for those. Furthermore we present an analytical
model of an artificial bus route and discuss stability properties and dynamic holding
strategies using both data available at the time and predicted headway data. In a numerical
simulation we illustrate the advantages of the presented predictive-control framework
compared to the classical approaches which only use directly available data.

The problem of providing connectivity for a collection of applications is largely one of data integration: the communicating parties must agree on thesemantics and syntax of the data being exchanged. In earlier papers [#!mp:jsc1!#,#!sg:BSG1!#], it was proposed that dictionaries of definitions foroperators, functions, and symbolic constants can effectively address the problem of semantic data integration. In this paper we extend that earlier work todiscuss the important issues in data integration at the syntactic level and propose a set of solutions that are both general, supporting a wide range of dataobjects with typing information, and efficient, supporting fast transmission and parsing.

We consider a scale discrete wavelet approach on the sphere based on spherical radial basis functions. If the generators of the wavelets have a compact support, the scale and detail spaces are finite-dimensional, so that the detail information of a function is determined by only finitely many wavelet coefficients for each scale. We describe a pyramid scheme for the recursive determination of the wavelet coefficients from level to level, starting from an initial approximation of a given function. Basic tools are integration formulas which are exact for functions up to a given polynomial degree and spherical convolutions.

We consider a multiple objective linear program (MOLP) max{Cx|Ax = b,x in N_{0}^{n}} where C = (c_ij) is the p x n - matrix of p different objective functions z_i(x) = c_{i1}x_1 + ... + c_{in}x_n , i = 1,...,p and A is the m x n - matrix of a system of m linear equations a_{k1}x_1 + ... + a_{kn}x_n = b_k , k=1,...,m which form the set of constraints of the problem. All coefficients are assumed to be natural numbers or zero. The set M of admissable solutions {hat x} is an admissible solution such that there exists no other admissable solution x' with C{hat x} Cx'. The efficient solutions play the role of optimal solutions for the MOLP and it is our aim to determine the set of all efficient solutions

In this paper we consider the problem of locating one new facility in the plane with respect to a given set of existing facility where a set of polygonal barriers restricts traveling. This non-convex optimization problem can be reduced to a finite set of convex subproblems if the objective function is a convex function of the travel distances between the new and the existing facilities (like e.g. the Median and Center objective functions). An exact Algorithm and a heuristic solution procedure based on this reduction result are developed.

The first part of this paper studies a Levenberg-Marquardt scheme for nonlinear inverse problems where the corresponding Lagrange (or regularization) parameter is chosen from an inexact Newton strategy. While the convergence analysis of standard implementations based on trust region strategies always requires the invertibility of the Fréchet derivative of the nonlinear operator at the exact solution, the new Levenberg-Marquardt scheme is suitable for ill-posed problems as long as the Taylor remainder is of second order in the interpolating metric between the range and dornain
topologies. Estimates of this type are established in the second part of the paper for ill-posed parameter identification problems arising in inverse groundwater hydrology. Both, transient and steady state data are investigated. Finally, the numerical performance of the new Levenberg-Marquardt scheme is
studied and compared to a usual implementation on a realistic but synthetic 2D model problem from the engineering literature.

A compact subset E of the complex plane is called removable if all bounded analytic functions on its complement are constant or, equivalently, i f its analytic capacity vanishes. The problem of finding a geometric characterization of the removable sets is more than a hundred years old and still not comp letely solved.

In the scalar case one knows that a complex normalized function of boundedvariation \(\phi\) on \([0,1]\) defines a unique complex regular Borel measure\(\mu\) on \([0,1]\). In this note we show that this is no longer true in generalin the vector valued case, even if \(\phi\) is assumed to be continuous. Moreover, the functions \(\phi\) which determine a countably additive vectormeasure \(\mu\) are characterized.

Let \(a_1, i:=1,\dots,m\), be an i.i.d. sequence taking values in \(\mathbb{R}^n\), whose convex hull is interpreted as a stochastic polyhedron \(P\). For a special class of random variables, which decompose additively relative to their boundary simplices, eg. the volume of \(P\), simple integral representations of its first two moments are given in case of rotationally symmetric distributions in order to facilitate estimations of variances or to quantify large deviations from the mean.

The asymptotic behaviour of a singular-perturbed two-phase Stefan problem due to slow diffusion in one of the two phases is investigated. In the limit the model equations reduce to a one-phase Stefan problem. A boundary layer at the moving interface makes it necessary to use a corrected interface condition obtained from matched asymptotic expansions. The approach is validated by numerical experiments using a front-tracking method.

Linearized flows past slender bodies can be asymptotically described by a linear Fredholm integral equation. A collocation method to solve this equation is presented. In cases where the spectral representation of the integral operator is explicitly known, the collocation method recovers the spectrum of the continuous operator. The approximation error is estimated for two discretizations of the integral operator and the convergence is proved. The collocation scheme is validated in several test cases and extended to situations where the spectrum is not explicit.

We present a particle method for the numerical simulation of boundary value problems for the steady-state Boltzmann equation. Referring to some recent results concerning steady-state schemes, the current approach may be used for multi-dimensional problems, where the collision scattering kernel is not restricted to Maxwellian molecules. The efficiency of the new approach is demonstrated by some numerical results obtained from simulations for the (two-dimensional) BEnard's instability in a rarefied gas flow.

We consider investment problems where an investor can invest in a savings account, stocks and bonds and tries to maximize her utility from terminal wealth. In contrast to the classical Merton problem we assume a stochastic interest rate. To solve the corresponding control problems it is necessary to prove averi cation theorem without the usual Lipschitz assumptions.

In this paper we propose a phenomenological model for the formation of an interstitial gap between the tumor and the stroma. The gap
is mainly filled with acid produced by the progressing edge of the tumor front. Our setting extends existing models for acid-induced tumor invasion models to incorporate
several features of local invasion like formation of gaps, spikes, buds, islands, and cavities. These behaviors are obtained mainly due to the random dynamics at the intracellular
level, the go-or-grow-or-recede dynamics on the population scale, together with the nonlinear coupling between the microscopic (intracellular) and macroscopic (population)
levels. The wellposedness of the model is proved using the semigroup technique and 1D and 2D numerical simulations are performed to illustrate model predictions and draw
conclusions based on the observed behavior.

Cancer research is not only a fast growing field involving many branches of science, but also an intricate and diversified field rife with anomalies. One such anomaly is the
consistent reliance of cancer cells on glucose metabolism for energy production even in a normoxic environment. Glycolysis is an inefficient pathway for energy production and normally is used during hypoxic conditions. Since cancer cells have a high demand for energy
(e.g. for proliferation) it is somehow paradoxical for them to rely on such a mechanism. An emerging conjecture aiming to explain this behavior is that cancer cells
preserve this aerobic glycolytic phenotype for its use in invasion and metastasis. We follow this hypothesis and propose a new model
for cancer invasion, depending on the dynamics of extra- and intracellular protons, by building upon the existing ones. We incorporate random perturbations in the intracellular proton dynamics to account
for uncertainties affecting the cellular machinery. Finally, we address the well-posedness of our setting and use numerical simulations to illustrate the model predictions.

The efficient numerical treatment of the Boltzmann equation is a very important task in many fields of application. Most of the practically relevant numerical schemes are based on the simulation of large particle systems that approximate the evolution of the distribution function described by the Boltzmann equation. In particular, stochastic particle systems play an important role in the construction of various numerical algorithms.

This work is concerned with dynamic flow problems, especially maximal dynamic flows and earliest arrival flows - also called universally maximal flows. First of all, a survey of known results about existence, computation and approximation of earliest arrival flows is given. For the special case of series-parallel graphs a polynomial algorithm for computing maximal dynamic flows is presented and this maximal dynamic flow is proven to be an earliest arrival flow.

Spline functions that approximate data given on the sphere are developed in a weighted Sobolev space setting. The flexibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A convergence theorem containing explicit constants yields a usable error bound. Our survey ends with the discussion of spherical splines in geodetically relevant pseudodifferential equations.

In this thesis, we investigate a statistical model for precipitation time series recorded at a single site. The sequence of observations consists of rainfall amounts aggregated over time periods of fixed duration. As the properties of this sequence depend strongly on the length of the observation intervals, we follow the approach of Rodriguez-Iturbe et. al. [1] and use an underlying model for rainfall intensity in continuous time. In this idealized representation, rainfall occurs in clusters of rectangular cells, and each observations is treated as the sum of cell contributions during a given time period. Unlike the previous work, we use a multivariate lognormal distribution for the temporal structure of the cells and clusters. After formulating the model, we develop a Markov-Chain Monte-Carlo algorithm for fitting it to a given data set. A particular problem we have to deal with is the need to estimate the unobserved intensity process alongside the parameter of interest. The performance of the algorithm is tested on artificial data sets generated from the model. [1] I. Rodriguez-Iturbe, D. R. Cox, and Valerie Isham. Some models for rainfall based on stochastic point processes. Proc. R. Soc. Lond. A, 410:269-288, 1987.

A Topology Primer
(2002)

The interest of the exploration of new hydrocarbon fields as well as deep geothermal reservoirs is permanently growing. The analysis of seismic data specific for such exploration projects is very complex and requires the deep knowledge in geology, geophysics, petrology, etc from interpreters, as well as the ability of advanced tools that are able to recover some particular properties. There again the existing wavelet techniques have a huge success in signal processing, data compression, noise reduction, etc. They enable to break complicate functions into many simple pieces at different scales and positions that makes detection and interpretation of local events significantly easier.
In this thesis mathematical methods and tools are presented which are applicable to the seismic data postprocessing in regions with non-smooth boundaries. We provide wavelet techniques that relate to the solutions of the Helmholtz equation. As application we are interested in seismic data analysis. A similar idea to construct wavelet functions from the limit and jump relations of the layer potentials was first suggested by Freeden and his Geomathematics Group.
The particular difficulty in such approaches is the formulation of limit and
jump relations for surfaces used in seismic data processing, i.e., non-smooth
surfaces in various topologies (for example, uniform and
quadratic). The essential idea is to replace the concept of parallel surfaces known for a smooth regular surface by certain appropriate substitutes for non-smooth surfaces.
By using the jump and limit relations formulated for regular surfaces, Helmholtz wavelets can be introduced that recursively approximate functions on surfaces with edges and corners. The exceptional point is that the construction of wavelets allows the efficient implementation in form of
a tree algorithm for the fast numerical computation of functions on the boundary.
In order to demonstrate the
applicability of the Helmholtz FWT, we study a seismic image obtained by the reverse time migration which is based on a finite-difference implementation. In fact, regarding the requirements of such migration algorithms in filtering and denoising the wavelet decomposition is successfully applied to this image for the attenuation of low-frequency
artifacts and noise. Essential feature is the space localization property of
Helmholtz wavelets which numerically enables to discuss the velocity field in
pointwise dependence. Moreover, the multiscale analysis leads us to reveal additional geological information from optical features.

The Earth's surface is an almost perfect sphere. Deviations from its spherical shape are less than 0,4% of its radius and essentially arise from its rotation. All equipotential surfaces are nearly spherical, too. In consequence, multiscale modelling of geoscientifically relevant data on the sphere involving rotational symmetry of the trial functions used for the approximation plays an important role. In this paper we deal with isotropic kernel functions showing local support and (one-dimensional) polynomial structure (briefly called isotropic finite elements) for reconstructing square--integrable functions on the sphere. Essential tool is the concept of multiresolution analysis by virtue of the spherical up function. The main result is a tree algorithm in terms of (low--order) isotropic finite elements.

We consider the problem of scheduling a bus fleet to evacuate persons from an endangered region. As most of the planning data is subject to uncertainty, we develop a two-stage bicriteria robust formulation, which considers both the evacuation time, and the vulnerability of the schedule to changing evacuation circumstances.
As the resulting integer program is too large to solve it directly using an off-the-shelf solver, we develop an iterative algorithm that successively adds new scenarios to the currently considered subproblem. In computational experiments, we show that this approach is fast enough to deal with an instance modeling an evacuation case within the city of Kaiserslautern, Germany.

In this paper we introduce a new type of single facility location problems on networks which includes as special cases most of the classical criteria in the literature. Structural results as well as a finite dominationg set for the optimal locations are developed. Also the extension to the multi-facility case is discussed.

Let \(A\):= {\(a_i\mid i= 1,\dots,m\)} be an i.i.d. random sample in (\mathbb{R}^n\), which we consider a random polyhedron, either as the convex hull of the \(a_i\) or as the intersection of halfspaces {\(x \mid a ^T_i x\leq 1\)}. We introduce a class of polyhedral functionals we will call "additive-type functionals", which covers a number of polyhedral functionals discussed in different mathematical fields, where the emphasis in our contribution will be on those, which arise in linear optimization theory. The class of additive-type functionals is a suitable setting in order to unify and to simplify the asymptotic probabilistic analysis of first and second moments of polyhedral functionals. We provide examples of asymptotic results on expectations and on variances.

We consider an autoregressive process with a nonlinear regression function that is modeled by a feedforward neural network. We derive a uniform central limit theorem which is useful in the context of change-point analysis. We propose a test for a change in the autoregression function which - by the uniform central limit theorem - has asymptotic power one for a large class of alternatives including local alternatives.

By means of the limit and jump relations of classical potential theory with respect to the vectorial Helmholtz equation a wavelet approach is established on a regular surface. The multiscale procedure is constructed in such a way that the emerging scalar, vectorial and tensorial potential kernels act as scaling functions. Corresponding wavelets are defined via a canonical refinement equation. A tree algorithm for fast decomposition of a complex-valued vector field given on a regular surface is developed based on numerical integration rules. By virtue of this tree algorithm, an effcient numerical method for the solution of vectorial Fredholm integral equations on regular surfaces is discussed in more detail. The resulting multiscale formulation is used to solve boundary-value problems for the time harmonic Maxwell's equations corresponding to regular surfaces.

We develop a test for stationarity of a time series against the alternative of a time-changing covariance structure. Using localized versions of the periodogram, we obtain empirical versions of a reasonable notion of a time-varying spectral density. Coefficients w.r.t. a Haar wavelet series expansion of such a time-varying periodogram are a possible indicator whether there is some deviation from covariance stationarity. We propose a test based on the limit distribution of these empirical coefficients.

In this paper we construct a numerical solver for the Saint Venant equations. Special attention
is given to the balancing of the source terms, including the bottom slope and variable cross-
sectional profiles. Therefore a special discretization of the pressure law is used, in order to
transfer analytical properties to the numerical method. Based on this approximation a well-
balanced solver is developed, assuring the C-property and depth positivity. The performance
of this method is studied in several test cases focusing on accurate capturing of steady states.

This dissertation is intended to transport the theory of Serre functors into the context of A-infinity-categories. We begin with an introduction to multicategories and closed multicategories, which form a framework in which the theory of A-infinity-categories is developed. We prove that (unital) A-infinity-categories constitute a closed symmetric multicategory. We define the notion of A-infinity-bimodule similarly to Tradler and show that it is equivalent to an A-infinity-functor of two arguments which takes values in the differential graded category of complexes of k-modules, where k is a commutative ground ring. Serre A-infinity-functors are defined via A-infinity-bimodules following ideas of Kontsevich and Soibelman. We prove that a unital closed under shifts A-infinity-category over a field admits a Serre A-infinity-functor if and only if its homotopy category admits an ordinary Serre functor. The proof uses categories and Serre functors enriched in the homotopy category of complexes of k-modules. Another important ingredient is an A-infinity-version of the Yoneda Lemma.