## Fachbereich Mathematik

### Filtern

#### Erscheinungsjahr

- 2003 (19) (entfernen)

#### Dokumenttyp

- Preprint (19) (entfernen)

#### Schlagworte

- Gravitationsfeld (2)
- Mehrskalenanalyse (2)
- Up Functions (2)
- Wavelet (2)
- wavelets (2)
- Abel integral equations (1)
- Approximation (1)
- Bessel functions (1)
- CHAMP (1)
- Decomposition and Reconstruction Schemes (1)

In recent years a considerable attention was paid to an investigation of finite orders relative to different properties of their isotone functions [2,3]. Strict order relations are defined as strict asymmetric and transitive binary relations. Some algebraic properties of strict orders were already studied in [6]. For the class K of so-called 2-series strict orders we describe the partially ordered set EndK of endomorphism monoids, ordered by inclusion. It is obtained that EndK possesses a least element and in most cases defines a Boolean algebra. Moreover, every 2-series strict order is determined by its n-ary isotone functions for some natural number n.

The following three papers present recent developments in multiscale gravitational field modeling by the use of CHAMP or CHAMP-related data. Part A - The Model SWITCH-03: Observed orbit perturbations of the near-Earth orbiting satellite CHAMP are analyzed to recover the long-wavelength features of the Earth's gravitational potential. More precisely, by tracking the low-flying satellite CHAMP by the high-flying satellites of the Global Positioning System (GPS) a kinematic orbit of CHAMP is obtainable from GPS tracking observations, i.e. the ephemeris in cartesian coordinates in an Earth-fixed coordinate frame (WGS84) becomes available. In this study we are concerned with two tasks: First we present new methods for preprocessing, modelling and analyzing the emerging tracking data. Then, in a first step we demonstrate the strength of our approach by applying it to simulated CHAMP orbit data. In a second step we present results obtained by operating on a data set derived from real CHAMP data. The modelling is mainly based on a connection between non-bandlimited spherical splines and least square adjustment techniques to take into account the non-sphericity of the trajectory. Furthermore, harmonic regularization wavelets for solving the underlying Satellite-to-Satellite Tracking (SST) problem are used within the framework of multiscale recovery of the Earth's gravitational potential leading to SWITCH-03 (Spline and Wavelet Inverse Tikhonov regularized CHamp data). Further it is shown how regularization parameters can be adapted adequately to a specific region improving a globally resolved model. Finally we give a comparison of the developed model to the EGM96 model, the model UCPH2002_02_0.5 from the University of Copenhagen and the GFZ models EIGEN-1s and EIGEN-2. Part B - Multiscale Solutions from CHAMP: CHAMP orbits and accelerometer data are used to recover the long- to medium- wavelength features of the Earth's gravitational potential. In this study we are concerned with analyzing preprocessed data in a framework of multiscale recovery of the Earth's gravitational potential, allowing both global and regional solutions. The energy conservation approach has been used to convert orbits and accelerometer data into in-situ potential. Our modelling is spacewise, based on (1) non-bandlimited least square adjustment splines to take into account the true (non-spherical) shape of the trajectory (2) harmonic regularization wavelets for solving the underlying inverse problem of downward continuation. Furthermore we can show that by adapting regularization parameters to specific regions local solutions can improve considerably on global ones. We apply this concept to kinematic CHAMP orbits, and, for test purposes, to dynamic orbits. Finally we compare our recovered model to the EGM96 model, and the GFZ models EIGEN-2 and EIGEN-GRACE01s. Part C - Multiscale Modeling from EIGEN-1S, EIGEN-2, EIGEN-GRACE01S, UCPH2002_0.5, EGM96: Spherical wavelets have been developed by the Geomathematics Group Kaiserslautern for several years and have been successfully applied to georelevant problems. Wavelets can be considered as consecutive band-pass filters and allow local approximations. The wavelet transform can also be applied to spherical harmonic models of the Earth's gravitational field like the most up-to-date EIGEN-1S, EIGEN-2, EIGEN-GRACE01S, UCPH2002_0.5, and the well-known EGM96. Thereby, wavelet coefficients arise and these shall be made available to other interested groups. These wavelet coefficients allow the reconstruction of the wavelet approximations. Different types of wavelets are considered: bandlimited wavelets (here: Shannon and Cubic Polynomial (CP)) as well as non-bandlimited ones (in our case: Abel-Poisson). For these types wavelet coefficients are computed and wavelet variances are given. The data format of the wavelet coefficients is also included.

We consider the problem of estimating the conditional quantile of a time series at time t given observations of the same and perhaps other time series available at time t-1. We discuss an estimate which we get by inverting a kernel estimate of the conditional distribution function, and prove its asymptotic normality and uniform strong consistency. We illustrate the good performance of the estimate for light and heavy-tailed distributions of the innovations with a small simulation study.

We generalize the classical shortest path problem in two ways. We consider two - in general contradicting - objective functions and introduce a time dependency of the cost which is caused by a traversal time on each arc. The resulting problem, called time-dependent bicriteria shortest path problem (TdBiSP) has several interesting practical applications, but has not attained much attention in the literature.

In this paper we discuss an earliest arrival flow problem of a network having arc travel times and capacities that vary with time over a finite time horizon T. We also consider the possibility to wait (or park) at a node before departingon outgoing arc. This waiting is bounded by the value of maximum waiting time and the node capacity which also vary with time.

In this paper we consider set covering problems with a coefficient matrix almost having the consecutive ones property, i.e., in many rows of the coefficient matrix, the ones appear consecutively. If this property holds for all rows it is well known that the set covering problem can be solved efficiently. For our case of almost consecutive ones we present a reformulation exploiting the consecutive ones structure to develop bounds and a branching scheme. Our approach has been tested on real-world data as well as on theoretical problem instances.

The Earth's surface is an almost perfect sphere. Deviations from its spherical shape are less than 0,4% of its radius and essentially arise from its rotation. All equipotential surfaces are nearly spherical, too. In consequence, multiscale modelling of geoscientifically relevant data on the sphere involving rotational symmetry of the trial functions used for the approximation plays an important role. In this paper we deal with isotropic kernel functions showing local support and (one-dimensional) polynomial structure (briefly called isotropic finite elements) for reconstructing square--integrable functions on the sphere. Essential tool is the concept of multiresolution analysis by virtue of the spherical up function. The main result is a tree algorithm in terms of (low--order) isotropic finite elements.

A new class of locally supported radial basis functions on the (unit) sphere is introduced by forming an infinite number of convolutions of ''isotropic finite elements''. The resulting up functions show useful properties: They are locally supported and are infinitely often differentiable. The main properties of these kernels are studied in detail. In particular, the development of a multiresolution analysis within the reference space of square--integrable functions over the sphere is given. Altogether, the paper presents a mathematically significant and numerically efficient introduction to multiscale approximation by locally supported radial basis functions on the sphere.

We study a possiblity to use the structure of the regularization error for a posteriori choice of the regularization parameter. As a result, a rather general form of a selection criterion is proposed, and its relation to the heuristical quasi-optimality principle of Tikhonov and Glasko (1964), and to an adaptation scheme proposed in a statistical context by Lepskii (1990), is discussed. The advantages of the proposed criterion are illustrated by using such examples as self-regularization of the trapezoidal rule for noisy Abel-type integral equations, Lavrentiev regularization for non-linear ill-posed problems and an inverse problem of the two-dimensional profile reconstruction.