## Fachbereich Mathematik

### Filtern

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (1033)
- Fraunhofer (ITWM) (2)

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (604)
- Dissertation (216)
- Bericht (121)
- Wissenschaftlicher Artikel (31)
- Diplomarbeit (25)
- Vorlesung (19)
- Teil eines Buches (Kapitel) (4)
- Studienarbeit (4)
- Arbeitspapier (4)
- Masterarbeit (2)

#### Schlagworte

- Wavelet (13)
- Inverses Problem (11)
- Mehrskalenanalyse (10)
- Modellierung (10)
- Mathematikunterricht (9)
- praxisorientiert (9)
- Mathematische Modellierung (8)
- Boltzmann Equation (7)
- Location Theory (7)
- MINT (7)

- A local time stepping method for district heating networks (2018)
- In this article a new numerical solver for simulations of district heating networks is presented. The numerical method applies the local time stepping introduced in [11] to networks of linear advection equations. In combination with the high order approach of [4] an accurate and very efficient scheme is developed. In several numerical test cases the advantages for simulations of district heating networks are shown.

- On Changepoint Detection in a Series of Stimulus-Response Data (2018)
- In this paper, we demonstrate the power of functional data models for a statistical analysis of stimulus-response experiments which is a quite natural way to look at this kind of data and which makes use of the full information available. In particular, we focus on the detection of a change in the mean of the response in a series of stimulus-response curves where we also take into account dependence in time.

- Multifacility Location Problems with Tree Structure and Finite Dominating Sets (2018)
- Multifacility location problems arise in many real world applications. Often, the facilities can only be placed in feasible regions such as development or industrial areas. In this paper we show the existence of a finite dominating set (FDS) for the planar multifacility location problem with polyhedral gauges as distance functions, and polyhedral feasible regions, if the interacting facilities form a tree. As application we show how to solve the planar 2-hub location problem in polynomial time. This approach will yield an ε-approximation for the euclidean norm case polynomial in the input data and 1/ε.

- Application of the Heath-Platen Estimator in Pricing Barrier and Bond Options (2018)
- In this thesis, we focus on the application of the Heath-Platen (HP) estimator in option pricing. In particular, we extend the approach of the HP estimator for pricing path dependent options under the Heston model. The theoretical background of the estimator was first introduced by Heath and Platen [32]. The HP estimator was originally interpreted as a control variate technique and an application for European vanilla options was presented in [32]. For European vanilla options, the HP estimator provided a considerable amount of variance reduction. Thus, applying the technique for path dependent options under the Heston model is the main contribution of this thesis. The first part of the thesis deals with the implementation of the HP estimator for pricing one-sided knockout barrier options. The main difficulty for the implementation of the HP estimator is located in the determination of the first hitting time of the barrier. To test the efficiency of the HP estimator we conduct numerical tests with regard to various aspects. We provide a comparison among the crude Monte Carlo estimation, the crude control variate technique and the HP estimator for all types of barrier options. Furthermore, we present the numerical results for at the money, in the money and out of the money barrier options. As numerical results imply, the HP estimator performs superior among others for pricing one-sided knockout barrier options under the Heston model. Another contribution of this thesis is the application of the HP estimator in pricing bond options under the Cox-Ingersoll-Ross (CIR) model and the Fong-Vasicek (FV) model. As suggested in the original paper of Heath and Platen [32], the HP estimator has a wide range of applicability for derivative pricing. Therefore, transferring the structure of the HP estimator for pricing bond options is a promising contribution. As the approximating Vasicek process does not seem to be as good as the deterministic volatility process in the Heston setting, the performance of the HP estimator in the CIR model is only relatively good. However, for the FV model the variance reduction provided by the HP estimator is again considerable. Finally, the numerical result concerning the weak convergence rate of the HP estimator for pricing European vanilla options in the Heston model is presented. As supported by numerical analysis, the HP estimator has weak convergence of order almost 1.

- An Iterative Plug-in Algorithm for Optimal Bandwidth Selection in Kernel Intensity Estimation for Spatial Data (2018)
- A popular model for the locations of fibres or grains in composite materials is the inhomogeneous Poisson process in dimension 3. Its local intensity function may be estimated non-parametrically by local smoothing, e.g. by kernel estimates. They crucially depend on the choice of bandwidths as tuning parameters controlling the smoothness of the resulting function estimate. In this thesis, we propose a fast algorithm for learning suitable global and local bandwidths from the data. It is well-known, that intensity estimation is closely related to probability density estimation. As a by-product of our study, we show that the difference is asymptotically negligible regarding the choice of good bandwidths, and, hence, we focus on density estimation. There are quite a number of data-driven bandwidth selection methods for kernel density estimates. cross-validation is a popular one and frequently proposed to estimate the optimal bandwidth. However, if the sample size is very large, it becomes computational expensive. In material science, in particular, it is very common to have several thousand up to several million points. Another type of bandwidth selection is a solve-the-equation plug-in approach which involves replacing the unknown quantities in the asymptotically optimal bandwidth formula by their estimates. In this thesis, we develop such an iterative fast plug-in algorithm for estimating the optimal global and local bandwidth for density and intensity estimation with a focus on 2- and 3-dimensional data. It is based on a detailed asymptotics of the estimators of the intensity function and of its second derivatives and integrals of second derivatives which appear in the formulae for asymptotically optimal bandwidths. These asymptotics are utilised to determine the exact number of iteration steps and some tuning parameters. For both global and local case, fewer than 10 iterations suffice. Simulation studies show that the estimated intensity by local bandwidth can better indicate the variation of local intensity than that by global bandwidth. Finally, the algorithm is applied to two real data sets from test bodies of fibre-reinforced high-performance concrete, clearly showing some inhomogeneity of the fibre intensity.

- Manifolds (2017)
- Lecture notes written to accompany a one semester course introducing to differential manifolds. Beyond the basic notions differential forms including Stokes' theorem are treated, as well as vector fields and flows on a differential manifold.

- Portfolio Optimization with Risk Constraints in the View of Stochastic Interest Rates (2017)
- We discuss the portfolio selection problem of an investor/portfolio manager in an arbitrage-free financial market where a money market account, coupon bonds and a stock are traded continuously. We allow for stochastic interest rates and in particular consider one and two-factor Vasicek models for the instantaneous short rates. In both cases we consider a complete and an incomplete market setting by adding a suitable number of bonds. The goal of an investor is to find a portfolio which maximizes expected utility from terminal wealth under budget and present expected short-fall (PESF) risk constraints. We analyze this portfolio optimization problem in both complete and incomplete financial markets in three different cases: (a) when the PESF risk is minimum, (b) when the PESF risk is between minimum and maximum and (c) without risk constraints. (a) corresponds to the portfolio insurer problem, in (b) the risk constraint is binding, i.e., it is satisfied with equality, and (c) corresponds to the unconstrained Merton investment. In all cases we find the optimal terminal wealth and portfolio process using the martingale method and Malliavin calculus respectively. In particular we solve in the incomplete market settings the dual problem explicitly. We compare the optimal terminal wealth in the cases mentioned using numerical examples. Without risk constraints, we further compare the investment strategies for complete and incomplete market numerically.

- Asymptotics for change-point tests and change-point estimators (2017)
- In change-point analysis the point of interest is to decide if the observations follow one model or if there is at least one time-point, where the model has changed. This results in two sub- fields, the testing of a change and the estimation of the time of change. This thesis considers both parts but with the restriction of testing and estimating for at most one change-point. A well known example is based on independent observations having one change in the mean. Based on the likelihood ratio test a test statistic with an asymptotic Gumbel distribution was derived for this model. As it is a well-known fact that the corresponding convergence rate is very slow, modifications of the test using a weight function were considered. Those tests have a better performance. We focus on this class of test statistics. The first part gives a detailed introduction to the techniques for analysing test statistics and estimators. Therefore we consider the multivariate mean change model and focus on the effects of the weight function. In the case of change-point estimators we can distinguish between the assumption of a fixed size of change (fixed alternative) and the assumption that the size of the change is converging to 0 (local alternative). Especially, the fixed case in rarely analysed in the literature. We show how to come from the proof for the fixed alternative to the proof of the local alternative. Finally, we give a simulation study for heavy tailed multivariate observations. The main part of this thesis focuses on two points. First, analysing test statistics and, secondly, analysing the corresponding change-point estimators. In both cases, we first consider a change in the mean for independent observations but relaxing the moment condition. Based on a robust estimator for the mean, we derive a new type of change-point test having a randomized weight function. Secondly, we analyse non-linear autoregressive models with unknown regression function. Based on neural networks, test statistics and estimators are derived for correctly specified as well as for misspecified situations. This part extends the literature as we analyse test statistics and estimators not only based on the sample residuals. In both sections, the section on tests and the one on the change-point estimator, we end with giving regularity conditions on the model as well as the parameter estimator. Finally, a simulation study for the case of the neural network based test and estimator is given. We discuss the behaviour under correct and mis-specification and apply the neural network based test and estimator on two data sets.

- Small self-centralizing subgroups in defect groups of finite classical groups (2017)
- In this thesis, we consider a problem from modular representation theory of finite groups. Lluís Puig asked the question whether the order of the defect groups of a block \( B \) of the group algebra of a given finite group \( G \) can always be bounded in terms of the order of the vertices of an arbitrary simple module lying in \( B \). In characteristic \( 2 \), there are examples showing that this is not possible in general, whereas in odd characteristic, no such examples are known. For instance, it is known that the answer to Puig's question is positive in case that \( G \) is a symmetric group, by work of Danz, Külshammer, and Puig. Motivated by this, we study the cases where \( G \) is a finite classical group in non-defining characteristic or one of the finite groups \( G_2(q) \) or \( ³D_4(q) \) of Lie type, again in non-defining characteristic. Here, we generalize Puig's original question by replacing the vertices occurring in his question by arbitrary self-centralizing subgroups of the defect groups. We derive positive and negative answers to this generalized question. \[\] In addition to that, we determine the vertices of the unipotent simple \( GL_2(q) \)-module labeled by the partition \( (1,1) \) in characteristic \( 2 \). This is done using a method known as Brauer construction.

- Wir entwickeln einen Synthesizer (2017)
- Die Akustik liefert einen interessanten Hintergrund, interdisziplinären und fächerverbindenen Unterricht zwischen Mathematik, Physik und Musik durchzuführen. SchülerInnen können hierbei beispielsweise experimentell tätig sein, indem sie Audioaufnahmen selbst erzeugen und sich mit Computersoftware Frequenzspektren erzeugen lassen. Genauso können die Schüler auch Frequenzspektren vorgeben und daraus Klänge erzeugen. Dies kann beispielsweise dazu dienen, den Begriff der Obertöne im Musikunterricht physikalisch oder mathematisch greifbar zu machen oder in der Harmonielehre Frequenzverhältnisse von Intervallen und Dreiklängen näher zu untersuchen. Der Computer ist hier ein sehr nützliches Hilfsmittel, da der mathematische Hintergrund dieser Aufgabe -- das Wechseln zwischen Audioaufnahme und ihrem Frequenzbild -- sich in der Fourier-Analysis findet, die für SchülerInnen äußerst anspruchsvoll ist. Indem man jedoch die Fouriertransformation als numerisches Hilfsmittel einführt, das nicht im Detail verstanden werden muss, lässt sich an anderer Stelle interessante Mathematik betreiben und die Zusammenhänge zwischen Akustik und Musik können spielerisch erfahren werden. Im folgenden Beitrag wird eine Herangehensweise geschildert, wie wir sie bereits bei der Felix-Klein-Modellierungswoche umgesetzt haben: Die SchülerInnen haben den Auftrag erhalten, einen Synthesizer zu entwickeln, mit dem verschiedene Musikinstrumente nachgeahmt werden können. Als Hilfsmittel haben sie eine kurze Einführung in die Eigenschaften der Fouriertransformation erhalten, sowie Audioaufnahmen verschiedener Instrumente.