## Fachbereich Mathematik

### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (550)
- Dissertation (211)
- Bericht (106)
- Wissenschaftlicher Artikel (25)
- Diplomarbeit (20)
- Vorlesung (7)
- Masterarbeit (4)
- Arbeitspapier (4)
- Bachelorarbeit (2)
- Studienarbeit (2)

#### Sprache

- Englisch (932) (entfernen)

#### Schlagworte

- Wavelet (13)
- Inverses Problem (11)
- Mehrskalenanalyse (10)
- Approximation (8)
- Boltzmann Equation (8)
- Location Theory (7)
- Numerical Simulation (7)
- Optimization (7)
- Regularisierung (7)
- integer programming (7)

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (932)
- Fraunhofer (ITWM) (2)

For some optimization problems on a graph \(G=(V,E)\), one can give a general formulation: Let \(c\colon E \to \mathbb{R}_{\geq 0}\) be a cost function on the edges and \(X \subseteq 2^E\) be a set of (so-called feasible) subsets of \(E\), one aims to minimize \(\sum_{e\in S} c(e)\) among all feasible \(S\in X\). This formulation covers, for instance, the shortest path problem by choosing \(X\) as the set of all paths between two vertices, or the minimum spanning tree problem by choosing \(X\) to be the set of all spanning trees. This bachelor thesis deals with a parametric version of this formulation, where the edge costs \(c_\lambda\colon E \to \mathbb{R}_{\geq 0}\) depend on a parameter \(\lambda\in\mathbb{R}_{\geq 0}\) in a concave and piecewise linear manner. The goal is to investigate the worst case minimum size of a so-called representation system \(R\subseteq X\), which contains for each scenario \(\lambda\in\mathbb{R}_{\geq 0}\) an optimal solution \(S(\lambda)\in R\). It turns out that only a pseudo-polynomial size can be ensured in general, but smaller systems have to exist in special cases. Moreover, methods are presented to find such small systems algorithmically. Finally, the notion of a representation system is relaxed in order to get smaller (i.e. polynomial) systems ensuring a certain approximation ratio.

Cutting-edge cancer therapy involves producing individualized medicine for many patients at the same time. Within this process, most steps can be completed for a certain number of patients simultaneously. Using these resources efficiently may significantly reduce waiting times for the patients and is therefore crucial for saving human lives. However, this involves solving a complex scheduling problem, which can mathematically be modeled as a proportionate flow shop of batching machines (PFB). In this thesis we investigate exact and approximate algorithms for tackling many variants of this problem. Related mathematical models have been studied before in the context of semiconductor manufacturing.

Destructive diseases of the lung like lung cancer or fibrosis are still often lethal. Also in case of fibrosis in the liver, the only possible cure is transplantation.
In this thesis, we investigate 3D micro computed synchrotron radiation (SR\( \mu \)CT) images of capillary blood vessels in mouse lungs and livers. The specimen show so-called compensatory lung growth as well as different states of pulmonary and hepatic fibrosis.
During compensatory lung growth, after resecting part of the lung, the remaining part compensates for this loss by extending into the empty space. This process is accompanied by an active vessel growing.
In general, the human lung can not compensate for such a loss. Thus, understanding this process in mice is important to improve treatment options in case of diseases like lung cancer.
In case of fibrosis, the formation of scars within the organ's tissue forces the capillary vessels to grow to ensure blood supply.
Thus, the process of fibrosis as well as compensatory lung growth can be accessed by considering the capillary architecture.
As preparation of 2D microscopic images is faster, easier, and cheaper compared to SR\( \mu \)CT images, they currently form the basis of medical investigation. Yet, characteristics like direction and shape of objects can only properly be analyzed using 3D imaging techniques. Hence, analyzing SR\( \mu \)CT data provides valuable additional information.
For the fibrotic specimen, we apply image analysis methods well-known from material science. We measure the vessel diameter using the granulometry distribution function and describe the inter-vessel distance by the spherical contact distribution. Moreover, we estimate the directional distribution of the capillary structure. All features turn out to be useful to characterize fibrosis based on the deformation of capillary vessels.
It is already known that the most efficient mechanism of vessel growing forms small torus-shaped holes within the capillary structure, so-called intussusceptive pillars. Analyzing their location and number strongly contributes to the characterization of vessel growing. Hence, for all three applications, this is of great interest. This thesis provides the first algorithm to detect intussusceptive pillars in SR\( \mu \)CT images. After segmentation of raw image data, our algorithm works automatically and allows for a quantitative evaluation of a large amount of data.
The analysis of SR\( \mu \)CT data using our pillar algorithm as well as the granulometry, spherical contact distribution, and directional analysis extends the current state-of-the-art in medical studies. Although it is not possible to replace certain 3D features by 2D features without losing information, our results could be used to examine 2D features approximating the 3D findings reasonably well.

Numerical Godeaux surfaces are minimal surfaces of general type with the smallest possible numerical invariants. It is known that the torsion group of a numerical Godeaux surface is cyclic of order \(m\leq 5\). A full classification has been given for the cases \(m=3,4,5\) by the work of Reid and Miyaoka. In each case, the corresponding moduli space is 8-dimensional and irreducible.
There exist explicit examples of numerical Godeaux surfaces for the orders \(m=1,2\), but a complete classification for these surfaces is still missing.
In this thesis we present a construction method for numerical Godeaux surfaces which is based on homological algebra and computer algebra and which arises from an experimental approach by Schreyer. The main idea is to consider the canonical ring \(R(X)\) of a numerical Godeaux surface \(X\) as a module over some graded polynomial ring \(S\). The ring \(S\) is chosen so that \(R(X)\) is finitely generated as an \(S\)-module and a Gorenstein \(S\)-algebra of codimension 3. We prove that the canonical ring of any numerical Godeaux surface, considered as an \(S\)-module, admits a minimal free resolution whose middle map is alternating. Moreover, we show that a partial converse of this statement is true under some additional conditions.
Afterwards we use these results to construct (canonical rings of) numerical Godeaux surfaces. Hereby, we restrict our study to surfaces whose bicanonical system has no fixed component but 4 distinct base points, in the following referred to as marked numerical Godeaux surfaces.
The particular interest of this thesis lies on marked numerical Godeaux surfaces whose torsion group is trivial. For these surfaces we study the fibration of genus 4 over \(\mathbb{P}^1\) induced by the bicanonical system. Catanese and Pignatelli showed that the general fibre is non-hyperelliptic and that the number \(\tilde{h}\) of hyperelliptic fibres is bounded by 3. The two explicit constructions of numerical Godeaux surfaces with a trivial torsion group due to Barlow and Craighero-Gattazzo, respectively, satisfy \(\tilde{h} = 2\).
With the method from this thesis, we construct an 8-dimensional family of numerical Godeaux surfaces with a trivial torsion group and whose general element satisfy \(\tilde{h}=0\).
Furthermore, we establish a criterion for the existence of hyperelliptic fibres in terms of a minimal free resolution of \(R(X)\). Using this criterion, we verify experimentally the
existence of a numerical Godeaux surface with \(\tilde{h}=1\).

SDE-driven modeling of phenotypically heterogeneous tumors: The influence of cancer cell stemness
(2018)

We deduce cell population models describing the evolution of a tumor (possibly interacting with its
environment of healthy cells) with the aid of differential equations. Thereby, different subpopulations
of cancer cells allow accounting for the tumor heterogeneity. In our settings these include cancer
stem cells known to be less sensitive to treatment and differentiated cancer cells having a higher
sensitivity towards chemo- and radiotherapy. Our approach relies on stochastic differential equations
in order to account for randomness in the system, arising e.g., by the therapy-induced decreasing
number of clonogens, which renders a pure deterministic model arguable. The equations are deduced
relying on transition probabilities characterizing innovations of the two cancer cell subpopulations,
and similarly extended to also account for the evolution of normal tissue. Several therapy approaches
are introduced and compared by way of tumor control probability (TCP) and uncomplicated tumor
control probability (UTCP). A PDE approach allows to assess the evolution of tumor and normal
tissue with respect to time and to cell population densities which can vary continuously in a given set
of states. Analytical approximations of solutions to the obtained PDE system are provided as well.

Optimal control of partial differential equations is an important task in applied mathematics where it is used in order to optimize, for example, industrial or medical processes. In this thesis we investigate an optimal control problem with tracking type cost functional for the Cattaneo equation with distributed control, that is, \(\tau y_{tt} + y_t - \Delta y = u\). Our focus is on the theoretical and numerical analysis of the limit process \(\tau \to 0\) where we prove the convergence of solutions of the Cattaneo equation to solutions of the heat equation.
We start by deriving both the Cattaneo and the classical heat equation as well as introducing our notation and some functional analytic background. Afterwards, we prove the well-posedness of the Cattaneo equation for homogeneous Dirichlet boundary conditions, that is, we show the existence and uniqueness of a weak solution together with its continuous dependence on the data. We need this in the following, where we investigate the optimal control problem for the Cattaneo equation: We show the existence and uniqueness of a global minimizer for an optimal control problem with tracking type cost functional and the Cattaneo equation as a constraint. Subsequently, we do an asymptotic analysis for \(\tau \to 0\) for both the forward equation and the aforementioned optimal control problem and show that the solutions of these problems for the Cattaneo equation converge strongly to the ones for the heat equation. Finally, we investigate these problems numerically, where we examine the different behaviour of the models and also consider the limit \(\tau \to 0\), suggesting a linear convergence rate.

In modern algebraic geometry solutions of polynomial equations are studied from a qualitative point of view using highly sophisticated tools such as cohomology, \(D\)-modules and Hodge structures. The latter have been unified in Saito’s far-reaching theory of mixed Hodge modules, that has shown striking applications including vanishing theorems for cohomology. A mixed Hodge module can be seen as a special type of filtered \(D\)-module, which is an algebraic counterpart of a system of linear differential equations. We present the first algorithmic approach to Saito’s theory. To this end, we develop a Gröbner basis theory for a new class of algebras generalizing PBW-algebras.
The category of mixed Hodge modules satisfies Grothendieck’s six-functor formalism. In part these functors rely on an additional natural filtration, the so-called \(V\)-filtration. A key result of this thesis is an algorithm to compute the \(V\)-filtration in the filtered setting. We derive from this algorithm methods for the computation of (extraordinary) direct image functors under open embeddings of complements of pure codimension one subvarieties. As side results we show
how to compute vanishing and nearby cycle functors and a quasi-inverse of Kashiwara’s equivalence for mixed Hodge modules.
Describing these functors in terms of local coordinates and taking local sections, we reduce the corresponding computations to algorithms over certain bifiltered algebras. It leads us to introduce the class of so-called PBW-reduction-algebras, a generalization of the class of PBW-algebras. We establish a comprehensive Gröbner basis framework for this generalization representing the involved filtrations by weight vectors.

Certain brain tumours are very hard to treat with radiotherapy due to their irregular shape caused by the infiltrative nature of the tumour cells. To enhance the estimation of the tumour extent one may use a mathematical model. As the brain structure plays an important role for the cell migration, it has to be included in such a model. This is done via diffusion-MRI data. We set up a multiscale model class accounting among others for integrin-mediated movement of cancer cells in the brain tissue, and the integrin-mediated proliferation. Moreover, we model a novel chemotherapy in combination with standard radiotherapy.
Thereby, we start on the cellular scale in order to describe migration. Then we deduce mean-field equations on the mesoscopic (cell density) scale on which we also incorporate cell proliferation. To reduce the phase space of the mesoscopic equation, we use parabolic scaling and deduce an effective description in the form of a reaction-convection-diffusion equation on the macroscopic spatio-temporal scale. On this scale we perform three dimensional numerical simulations for the tumour cell density, thereby incorporating real diffusion tensor imaging data. To this aim, we present programmes for the data processing taking the raw medical data and processing it to the form to be included in the numerical simulation. Thanks to the reduction of the phase space, the numerical simulations are fast enough to enable application in clinical practice.

Composite materials are used in many modern tools and engineering applications and
consist of two or more materials that are intermixed. Features like inclusions in a matrix
material are often very small compared to the overall structure. Volume elements that
are characteristic for the microstructure can be simulated and their elastic properties are
then used as a homogeneous material on the macroscopic scale.
Moulinec and Suquet [2] solve the so-called Lippmann-Schwinger equation, a reformulation of the equations of elasticity in periodic homogenization, using truncated
trigonometric polynomials on a tensor product grid as ansatz functions.
In this thesis, we generalize their approach to anisotropic lattices and extend it to
anisotropic translation invariant spaces. We discretize the partial differential equation
on these spaces and prove the convergence rate. The speed of convergence depends on
the smoothness of the coefficients and the regularity of the ansatz space. The spaces of
translates unify the ansatz of Moulinec and Suquet with de la Vallée Poussin means and
periodic Box splines, including the constant finite element discretization of Brisard and
Dormieux [1].
For finely resolved images, sampling on a coarser lattice reduces the computational
effort. We introduce mixing rules as the means to transfer fine-grid information to the
smaller lattice.
Finally, we show the effect of the anisotropic pattern, the space of translates, and the
convergence of the method, and mixing rules on two- and three-dimensional examples.
References
[1] S. Brisard and L. Dormieux. “FFT-based methods for the mechanics of composites:
A general variational framework”. In: Computational Materials Science 49.3 (2010),
pp. 663–671. doi: 10.1016/j.commatsci.2010.06.009.
[2] H. Moulinec and P. Suquet. “A numerical method for computing the overall response
of nonlinear composites with complex microstructure”. In: Computer Methods in
Applied Mechanics and Engineering 157.1-2 (1998), pp. 69–94. doi: 10.1016/s00457825(97)00218-1.

Multiphase materials combine properties of several materials, which makes them interesting for high-performing components. This thesis considers a certain set of multiphase materials, namely silicon-carbide (SiC) particle-reinforced aluminium (Al) metal matrix composites and their modelling based on stochastic geometry models.
Stochastic modelling can be used for the generation of virtual material samples: Once we have fitted a model to the material statistics, we can obtain independent three-dimensional “samples” of the material under investigation without the need of any actual imaging. Additionally, by changing the model parameters, we can easily simulate a new material composition.
The materials under investigation have a rather complicated microstructure, as the system of SiC particles has many degrees of freedom: Size, shape, orientation and spatial distribution. Based on FIB-SEM images, that yield three-dimensional image data, we extract the SiC particle structure using methods of image analysis. Then we model the SiC particles by anisotropically rescaled cells of a random Laguerre tessellation that was fitted to the shapes of isotropically rescaled particles. We fit a log-normal distribution for the volume distribution of the SiC particles. Additionally, we propose models for the Al grain structure and the Aluminium-Copper (\({Al}_2{Cu}\)) precipitations occurring on the grain boundaries and on SiC-Al phase boundaries.
Finally, we show how we can estimate the parameters of the volume-distribution based on two-dimensional SEM images. This estimation is applied to two samples with different mean SiC particle diameters and to a random section through the model. The stereological estimations are within acceptable agreement with the parameters estimated from three-dimensional image data
as well as with the parameters of the model.