Fachbereich Mathematik
Refine
Year of publication
- 2011 (30) (remove)
Document Type
- Doctoral Thesis (14)
- Preprint (10)
- Report (6)
Keywords
- autoregressive process (3)
- neural network (3)
- nonparametric regression (3)
- (dynamic) network flows (1)
- CUSUM statistic (1)
- Change analysis (1)
- Chow Quotient (1)
- Copula (1)
- Credit Default Swap (1)
- Dynamic Network Flows (1)
- FPTAS (1)
- Finite Pointset Method (1)
- FlowLoc (1)
- Green’s function (1)
- INGARCH (1)
- Integer-valued time series (1)
- Knapsack problem (1)
- Local smoothing (1)
- Markov Chain (1)
- Markov Kette (1)
- Mathematik (1)
- Mathematische Modellierung (1)
- Methode der Fundamentallösungen (1)
- Momentum and Mas Transfer (1)
- Multi Primary and One Second Particle Method (1)
- Multiphase Flows (1)
- Non-commutative Computer Algebra (1)
- Order (1)
- Parallel volume (1)
- Poisson autoregression (1)
- Population Balance Equation (1)
- Poroelastizität (1)
- Pseudopolynomial-Time Algorithm (1)
- Rank test (1)
- Restricted Shortest Path (1)
- Shortest path problem (1)
- Similarity measures (1)
- Standard basis (1)
- Theorie schwacher Lösungen (1)
- Tiefengeothermie (1)
- Tropical Grassmannian (1)
- Tropical Intersection Theory (1)
- Wills functional (1)
- additive Gaussian noise (1)
- change analysis (1)
- changepoint test (1)
- combinatorial optimization (1)
- connectedness (1)
- convex optimization (1)
- correlated errors (1)
- denoising (1)
- gradient descent reprojection (1)
- gravitation (1)
- heuristic (1)
- higher-order moments (1)
- image restoration (1)
- local search algorithm (1)
- locally supported wavelets (1)
- location theory (1)
- magnetic field (1)
- maximum a posteriori estimation (1)
- maximum likelihood estimation (1)
- method of fundamental solutions (1)
- multicriteria optimization (1)
- multiplicative noise (1)
- non-convex body (1)
- non-local filtering (1)
- numerical irreducible decomposition (1)
- oblique derivative (1)
- poroelasticity (1)
- potential (1)
- regularization methods (1)
- resource constrained shortest path problem (1)
- sequential test (1)
- single layer kernel (1)
- spherical decomposition (1)
- splines (1)
- strongly polynomial-time algorithm (1)
- superstep cycles (1)
- uniform central limit theorem (1)
- universal objective function (1)
- weak solution theory (1)
Mrázek et al. [14] proposed a unified approach to curve estimation which combines
localization and regularization. In this thesis we will use their approach to study
some asymptotic properties of local smoothers with regularization. In Particular, we
shall discuss the regularized local least squares (RLLS) estimate with correlated errors
(more precisely with stationary time series errors), and then based on this approach
we will discuss the case when the kernel function is dirac function and compare our
smoother with the spline smoother. Finally, we will do some simulation study.
The shortest path problem in which the \((s,t)\)-paths \(P\) of a given digraph \(G =(V,E)\) are compared with respect to the sum of their edge costs is one of the best known problems in combinatorial optimization. The paper is concerned with a number of variations of this problem having different objective functions like bottleneck, balanced, minimum deviation, algebraic sum, \(k\)-sum and \(k\)-max objectives, \((k_1, k_2)-max, (k_1, k_2)\)-balanced and several types of trimmed-mean objectives. We give a survey on existing algorithms and propose a general model for those problems not yet treated in literature. The latter is based on the solution of resource constrained shortest path problems with equality constraints which can be solved in pseudo-polynomial time if the given graph is acyclic and the number of resources is fixed. In our setting, however, these problems can be solved in strongly polynomial time. Combining this with known results on \(k\)-sum and \(k\)-max optimization for general combinatorial problems, we obtain strongly polynomial algorithms for a variety of path problems on acyclic and general digraphs.
This thesis is devoted to constructive module theory of polynomial
graded commutative algebras over a field.
It treats the theory of Groebner bases (GB), standard bases (SB) and syzygies as well as algorithms
and their implementations.
Graded commutative algebras naturally unify exterior and commutative polynomial algebras.
They are graded non-commutative, associative unital algebras over fields and may contain zero-divisors.
In this thesis
we try to make the most use out of _a priori_ knowledge about
their characteristic (super-commutative) structure
in developing direct symbolic methods, algorithms and implementations,
which are intrinsic to graded commutative algebras and practically efficient.
For our symbolic treatment we represent them as polynomial algebras
and redefine the product rule in order to allow super-commutative structures
and, in particular, to allow zero-divisors.
Using this representation we give a nice characterization
of a GB and an algorithm for its computation.
We can also tackle central localizations of graded commutative algebras by allowing commutative variables to be _local_,
generalizing Mora algorithm (in a similar fashion as G.M.Greuel and G.Pfister by allowing local or mixed monomial orderings)
and working with SBs.
In this general setting we prove a generalized Buchberger's criterion,
which shows that syzygies of leading terms play the utmost important role
in SB and syzygy module computations.
Furthermore, we develop a variation of the La Scala-Stillman free resolution algorithm,
which we can formulate particularly close to our implementation.
On the implementation side
we have further developed the Singular non-commutative subsystem Plural
in order to allow polynomial arithmetic
and more involved non-commutative basic Computer Algebra computations (e.g. S-polynomial, GB)
to be easily implementable for specific algebras.
At the moment graded commutative algebra-related algorithms
are implemented in this framework.
Benchmarks show that our new algorithms and implementation are practically efficient.
The developed framework has a lot of applications in various
branches of mathematics and theoretical physics.
They include computation of sheaf cohomology, coordinate-free verification of affine geometry
theorems and computation of cohomology rings of p-groups, which are partially described in this thesis.
Insbesondere bei der industriellen Nutzung tiefer geothermischer Systeme gibt es Risiken, die im Hinblick auf eine zukunftsträchtige Rolle der Ressource "Geothermie" innerhalb der Energiebranche eingeschätzt und minimiert werden müssen. Zur Förderung und Unterstützung dieses Prozesses kann die Mathematik einen entscheidenden Beitrag leisten. Um dies voranzutreiben haben wir zur Charakterisierung tiefer geothermischer Systeme ein Säulenmodell entwickelt, das die Bereiche Exploration, Bau und Produktion näher beleuchtet. Im Speziellen beinhalten die Säulen: Seismische Erkundung, Gravimetrie/Geomagnetik, Transportprozesse, Spannungsfeld.
This report gives an insight into basics of stress field simulations for geothermal reservoirs.
The quasistatic equations of poroelasticity are deduced from constitutive equations, balance
of mass and balance of momentum. Existence and uniqueness of a weak solution is shown.
In order of to find an approximate solution numerically, usage of the so–called method of
fundamental solutions is a promising way. The idea of this method as well as a sketch of
how convergence may be proven are given.
The interest of the exploration of new hydrocarbon fields as well as deep geothermal reservoirs is permanently growing. The analysis of seismic data specific for such exploration projects is very complex and requires the deep knowledge in geology, geophysics, petrology, etc from interpreters, as well as the ability of advanced tools that are able to recover some particular properties. There again the existing wavelet techniques have a huge success in signal processing, data compression, noise reduction, etc. They enable to break complicate functions into many simple pieces at different scales and positions that makes detection and interpretation of local events significantly easier.
In this thesis mathematical methods and tools are presented which are applicable to the seismic data postprocessing in regions with non-smooth boundaries. We provide wavelet techniques that relate to the solutions of the Helmholtz equation. As application we are interested in seismic data analysis. A similar idea to construct wavelet functions from the limit and jump relations of the layer potentials was first suggested by Freeden and his Geomathematics Group.
The particular difficulty in such approaches is the formulation of limit and
jump relations for surfaces used in seismic data processing, i.e., non-smooth
surfaces in various topologies (for example, uniform and
quadratic). The essential idea is to replace the concept of parallel surfaces known for a smooth regular surface by certain appropriate substitutes for non-smooth surfaces.
By using the jump and limit relations formulated for regular surfaces, Helmholtz wavelets can be introduced that recursively approximate functions on surfaces with edges and corners. The exceptional point is that the construction of wavelets allows the efficient implementation in form of
a tree algorithm for the fast numerical computation of functions on the boundary.
In order to demonstrate the
applicability of the Helmholtz FWT, we study a seismic image obtained by the reverse time migration which is based on a finite-difference implementation. In fact, regarding the requirements of such migration algorithms in filtering and denoising the wavelet decomposition is successfully applied to this image for the attenuation of low-frequency
artifacts and noise. Essential feature is the space localization property of
Helmholtz wavelets which numerically enables to discuss the velocity field in
pointwise dependence. Moreover, the multiscale analysis leads us to reveal additional geological information from optical features.
Intersection Theory on Tropical Toric Varieties and Compactifications of Tropical Parameter Spaces
(2011)
We study toric varieties over the tropical semifield. We define tropical cycles inside these toric varieties and extend the stable intersection of tropical cycles in R^n to these toric varieties. In particular, we show that every tropical cycle can be degenerated into a sum of torus-invariant cycles. This allows us to tropicalize algebraic cycles of toric varieties over an algebraically closed field with non-Archimedean valuation. We see that the tropicalization map is a homomorphism on cycles and an isomorphism on cycle classes. Furthermore, we can use projective toric varieties to compactify known tropical varieties and study their combinatorics. We do this for the tropical Grassmannian in the Plücker embedding and compactify the tropical parameter space of rational degree d curves in tropical projective space using Chow quotients of the tropical Grassmannian.
In this paper we continue the investigation of the asymptotic behavior of the parallel volume in Minkowski spaces as the distance tends to infinity that was started in [13]. We will show that the difference of the parallel volume of the convex hull of a body and the parallel volume of the body itself can at most have order \(r^{d-2}\) in dimension \(d\). Then we will show that in the Euclidean case this difference can at most have order \(r^{d-3}\). We will also examine the asymptotic behavior of the derivative of this difference as the distance tends to infinity. After this we will compute the derivative of \(f_\mu (rK)\) in \(r\), where \(f_\mu\) is the Wills functional or a similar functional, \(K\) is a fixed body and \(rK\) is the Minkowski-product of \(r\) and \(K\). Finally we will use these results to examine Brownian paths and Boolean models and derive new proofs for formulae for intrinsic volumes.
We discuss some first steps towards experimental design for neural network regression which, at present, is too complex to treat fully in general. We encounter two difficulties: the nonlinearity of the models together with the high parameter dimension on one hand, and the common misspecification of the models on the other hand.
Regarding the first problem, we restrict our consideration to neural networks with only one and two neurons in the hidden layer and a univariate input variable. We prove some results regarding locally D-optimal designs, and present a numerical study using the concept of maximin optimal designs.
In respect of the second problem, we have a look at the effects of misspecification on optimal experimental designs.