## Fachbereich Mathematik

### Refine

#### Year of publication

- 2010 (21) (remove)

#### Document Type

- Doctoral Thesis (10)
- Report (5)
- Preprint (4)
- Article (1)
- Diploma Thesis (1)

#### Keywords

- Erwarteter Nutzen (2)
- Portfolio Selection (2)
- Stochastische dynamische Optimierung (2)
- Algebraische Geometrie (1)
- Bell Number (1)
- Combinatorial optimization (1)
- Commodity Index (1)
- Competitive Analysis (1)
- Computeralgebra (1)
- Conditional Value-at-Risk (1)
- Darstellungstheorie (1)
- Differenzenverfahren (1)
- Endliche Gruppe (1)
- Erdöl Prospektierung (1)
- Feynman path integrals (1)
- Filtration (1)
- Financial Engineering (1)
- Finanzmathematik (1)
- Greedy Heuristic (1)
- Gruppentheorie (1)
- Gröbner-Basis (1)
- Gröbner-basis (1)
- Handelsstrategien (1)
- Hochskalieren (1)
- Irreduzibler Charakter (1)
- Lie-Typ-Gruppe (1)
- Local smoothing (1)
- Marktmanipulation (1)
- Mehrskalenmodell (1)
- Multiscale modelling (1)
- Numerical Flow Simulation (1)
- Numerical methods (1)
- Numerische Strömungssimulation (1)
- Numerisches Verfahren (1)
- Online Algorithms (1)
- Optimization (1)
- Option Valuation (1)
- Optionspreistheorie (1)
- Parallel Algorithms (1)
- Paralleler Algorithmus (1)
- Partielle Differentialgleichung (1)
- Poisson regression (1)
- Portfolio-Optimierung (1)
- Portfoliomanagement (1)
- Radiative heat transfer (1)
- Regime-Shift Modell (1)
- Regularization methods (1)
- Risikomaße (1)
- Risikotheorie (1)
- Risk Measures (1)
- Robust smoothing (1)
- Rohstoffhandel (1)
- Rohstoffindex (1)
- SPn-approximation (1)
- Schnitttheorie (1)
- Train Rearrangement (1)
- Tropische Geometrie (1)
- Upscaling (1)
- Value-at-Risk (1)
- White Noise Analysis (1)
- aleph (1)
- algebraic topology (1)
- algebraische Topologie (1)
- angewandte Mathematik (1)
- angewandte Topologie (1)
- applied mathematics (1)
- bottleneck (1)
- combinatorial optimization (1)
- competitive analysis (1)
- computer algebra (1)
- count data (1)
- delay management (1)
- finite difference schemes (1)
- fptas (1)
- grenzwert (1)
- großer Investor (1)
- integer GARCH (1)
- integer-valued time series (1)
- k-max (1)
- kardinalzahl (1)
- large investor (1)
- limes (1)
- market manipulation (1)
- multiple objective (1)
- multiple objective optimization (1)
- online optimization (1)
- optimal consumption and investment (1)
- optimal control (1)
- optimales Investment (1)
- parameter identification (1)
- partial differential equation (1)
- petroleum exploration (1)
- polynomial algorithms (1)
- portfolio optimization (1)
- public transportation (1)
- quickest path (1)
- regime-shift model (1)
- robust network flows (1)
- shortest path problem (1)
- unendlich (1)
- universal objective function (1)
- weak dependence (1)

We introduce a class of models for time series of counts which include INGARCH-type models as well as log linear models for conditionally Poisson distributed data. For those processes, we formulate simple conditions for stationarity and weak dependence with a geometric rate. The coupling argument used in the proof serves as a role model for a similar treatment of integer-valued time series models based on other types of thinning operations.

Tropical intersection theory
(2010)

This thesis consists of five chapters: Chapter 1 contains the basics of the theory and is essential for the rest of the thesis. Chapters 2-5 are to a large extent independent of each other and can be read separately. - Chapter 1: Foundations of tropical intersection theory In this first chapter we set up the foundations of a tropical intersection theory covering many concepts and tools of its counterpart in algebraic geometry such as affine tropical cycles, Cartier divisors, morphisms of tropical cycles, pull-backs of Cartier divisors, push-forwards of cycles and an intersection product of Cartier divisors and cycles. Afterwards, we generalize these concepts to abstract tropical cycles and introduce a concept of rational equivalence. Finally, we set up an intersection product of cycles and prove that every cycle is rationally equivalent to some affine cycle in the special case that our ambient cycle is R^n. We use this result to show that rational and numerical equivalence agree in this case and prove a tropical Bézout's theorem. - Chapter 2: Tropical cycles with real slopes and numerical equivalence In this chapter we generalize our definitions of tropical cycles to polyhedral complexes with non-rational slopes. We use this new definition to show that if our ambient cycle is a fan then every subcycle is numerically equivalent to some affine cycle. Finally, we restrict ourselves to cycles in R^n that are "generic" in some sense and study the concept of numerical equivalence in more detail. - Chapter 3: Tropical intersection products on smooth varieties We define an intersection product of tropical cycles on tropical linear spaces L^n_k and on other, related fans. Then, we use this result to obtain an intersection product of cycles on any "smooth" tropical variety. Finally, we use the intersection product to introduce a concept of pull-backs of cycles along morphisms of smooth tropical varieties and prove that this pull-back has all expected properties. - Chapter 4: Weil and Cartier divisors under tropical modifications First, we introduce "modifications" and "contractions" and study their basic properties. After that, we prove that under some further assumptions a one-to-one correspondence of Weil and Cartier divisors is preserved by modifications. In particular we can prove that on any smooth tropical variety we have a one-to-one correspondence of Weil and Cartier divisors. - Chapter 5: Chern classes of tropical vector bundles We give definitions of tropical vector bundles and rational sections of tropical vector bundles. We use these rational sections to define the Chern classes of such a tropical vector bundle. Moreover, we prove that these Chern classes have all expected properties. Finally, we classify all tropical vector bundles on an elliptic curve up to isomorphisms.

In the generalized max flow problem, the aim is to find a maximum flow in a generalized network, i.e., a network with multipliers on the arcs that specify which portion of the flow entering an arc at its tail node reaches its head node. We consider this problem for the class of series-parallel graphs. First, we study the continuous case of the problem and prove that it can be solved using a greedy approach. Based on this result, we present a combinatorial algorithm that runs in O(m*m) time and a dynamic programming algorithm with running time O(m*log(m)) that only computes the maximum flow value but not the flow itself. For the integral version of the problem, which is known to be NP-complete, we present a pseudo-polynomial algorithm.

Mrázek et al. [25] proposed a unified approach to curve estimation which combines localization and regularization. Franke et al. [10] used that approach to discuss the case of the regularized local least-squares (RLLS) estimate. In this thesis we will use the unified approach of Mrázek et al. to study some asymptotic properties of local smoothers with regularization. In particular, we shall discuss the Huber M-estimate and its limiting cases towards the L2 and the L1 cases. For the regularization part, we will use quadratic regularization. Then, we will define a more general class of regularization functions. Finally, we will do a Monte Carlo simulation study to compare different types of estimates.

Online Delay Management
(2010)

We present extensions to the Online Delay Management Problem on a Single Train Line. While a train travels along the line, it learns at each station how many of the passengers wanting to board the train have a delay of delta. If the train does not wait for them, they get delayed even more since they have to wait for the next train. Otherwise, the train waits and those passengers who were on time are delayed by delta. The problem consists in deciding when to wait in order to minimize the total delay of all passengers on the train line. We provide an improved lower bound on the competitive ratio of any deterministic online algorithm solving the problem using game tree evaluation. For the extension of the original model to two possible passenger delays delta_1 and delta_2, we present a 3-competitive deterministic online algorithm. Moreover, we study an objective function modeling the refund system of the German national railway company, which pays passengers with a delay of at least Delta a part of their ticket price back. In this setting, the aim is to maximize the profit. We show that there cannot be a deterministic competitive online algorithm for this problem and present a 2-competitive randomized algorithm.

In the classical Merton investment problem of maximizing the expected utility from terminal wealth and intermediate consumption stock prices are independent of the investor who is optimizing his investment strategy. This is reasonable as long as the considered investor is small and thus does not influence the asset prices. However for an investor whose actions may affect the financial market the framework of the classical investment problem turns out to be inappropriate. In this thesis we provide a new approach to the field of large investor models. We study the optimal investment problem of a large investor in a jump-diffusion market which is in one of two states or regimes. The investor’s portfolio proportions as well as his consumption rate affect the intensity of transitions between the different regimes. Thus the investor is ’large’ in the sense that his investment decisions are interpreted by the market as signals: If, for instance, the large investor holds 25% of his wealth in a certain asset then the market may regard this as evidence for the corresponding asset to be priced incorrectly, and a regime shift becomes likely. More specifically, the large investor as modeled here may be the manager of a big mutual fund, a big insurance company or a sovereign wealth fund, or the executive of a company whose stocks are in his own portfolio. Typically, such investors have to disclose their portfolio allocations which impacts on market prices. But even if a large investor does not disclose his portfolio composition as it is the case of several hedge funds then the other market participants may speculate about the investor’s strategy which finally could influence the asset prices. Since the investor’s strategy only impacts on the regime shift intensities the asset prices do not necessarily react instantaneously. Our model is a generalization of the two-states version of the Bäuerle-Rieder model. Hence as the Bäuerle-Rieder model it is suitable for long investment periods during which market conditions could change. The fact that the investor’s influence enters the intensities of the transitions between the two states enables us to solve the investment problem of maximizing the expected utility from terminal wealth and intermediate consumption explicitly. We present the optimal investment strategy for a large investor with CRRA utility for three different kinds of strategy-dependent regime shift intensities – constant, step and affine intensity functions. In each case we derive the large investor’s optimal strategy in explicit form only dependent on the solution of a system of coupled ODEs of which we show that it admits a unique global solution. The thesis is organized as follows. In Section 2 we repeat the classical Merton investment problem of a small investor who does not influence the market. Further the Bäuerle-Rieder investment problem in which the market states follow a Markov chain with constant transition intensities is discussed. Section 3 introduces the aforementioned investment problem of a large investor. Besides the mathematical framework and the HJB-system we present a verification theorem that is necessary to verify the optimality of the solutions to the investment problem that we derive later on. The explicit derivation of the optimal investment strategy for a large investor with power utility is given in Section 4. For three kinds of intensity functions – constant, step and affine – we give the optimal solution and verify that the corresponding ODE-system admits a unique global solution. In case of the strategy-dependent intensity functions we distinguish three particular kinds of this dependency – portfolio-dependency, consumption-dependency and combined portfolio- and consumption-dependency. The corresponding results for an investor having logarithmic utility are shown in Section 5. In the subsequent Section 6 we consider the special case of a market consisting of only two correlated stocks besides the money market account. We analyze the investor’s optimal strategy when only the position in one of those two assets affects the market state whereas the position in the other asset is irrelevant for the regime switches. Various comparisons of the derived investment problems are presented in Section 7. Besides the comparisons of the particular problems with each other we also dwell on the sensitivity of the solution concerning the parameters of the intensity functions. Finally we consider the loss the large investor had to face if he neglected his influence on the market. In Section 8 we conclude the thesis.

In this work a 3-dimensional contact elasticity problem for a thin fiber and a rigid foundation is studied. We describe the contact condition by a linear Robin-condition (by meaning of the penalized and linearized non-penetration and friction conditions).
The dimension of the problem is reduced by an asymptotic approach. Scaling the Robin parameters appropriately we obtain a recurrent chain of Neumann type boundary value problems which are considered only in the microscopic scale. The problem for the leading term is a homogeneous Neumann problem, hence the leading term depends only on the slow variable. This motivates the choice of a multiplicative ansatz in the asymptotic expansion.
The theoretical results are illustrated with numerical examples performed with a commercial finite-element software-tool.

Laser-induced thermotherapy (LITT) is an established minimally invasive percutaneous technique of tumor ablation. Nevertheless, there is a need to predict the effect of laser applications and optimizing irradiation planning in LITT. Optical attributes (absorption, scattering) change due to thermal denaturation. The work presents the possibility to identify these temperature dependent parameters from given temperature measurements via an optimal control problem. The solvability of the optimal control problem is analyzed and results of successful implementations are shown.

In this work, we develop a framework for analyzing an executive’s own- company stockholding and work effort preferences. The executive, character- ized by risk aversion and work effectiveness parameters, invests his personal wealth without constraint in the financial market, including the stock of his own company whose value he can directly influence with work effort. The executive’s utility-maximizing personal investment and work effort strategy is derived in closed form for logarithmic and power utility and for exponential utility for the case of zero interest rates. Additionally, a utility indifference rationale is applied to determine his fair compensation. Being unconstrained by performance contracting, the executive’s work effort strategy establishes a base case for theoretical or empirical assessment of the benefits or otherwise of constraining executives with performance contracting. Further, we consider a highly-qualified individual with respect to her choice between two distinct career paths. She can choose between a mid-level management position in a large company and an executive position within a smaller listed company with the possibility to directly affect the company’s share price. She invests in the financial market including the share of the smaller listed company. The utility maximizing strategy from consumption, investment, and work effort is derived in closed form for logarithmic utility and power utility. Conditions for the individual to pursue her career with the smaller listed company are obtained. The participation constraint is formulated in terms of the salary differential between the two positions. The smaller listed company can offer less salary. The salary shortfall is offset by the possibilityto benefit from her work effort by acquiring own-company shares. This givesinsight into aspects of optimal contract design. Our framework is applicable to the pharmaceutical and financial industry, as well as the IT sector.