## Fachbereich Mathematik

### Refine

#### Document Type

- Preprint (3)
- Doctoral Thesis (1)

#### Keywords

- Multiobjective optimization (3)
- Hypervolume (2)
- Subset selection (2)
- k-link shortest path (2)
- Approximation (1)
- Box-Algorithm (1)
- coverage error (1)

In this thesis, we investigate several upcoming issues occurring in the context of conceiving and building a decision support system. We elaborate new algorithms for computing representative systems with special quality guarantees, provide concepts for supporting the decision makers after a representative system was computed, and consider a methodology of combining two optimization problems.
We review the original Box-Algorithm for two objectives by Hamacher et al. (2007) and discuss several extensions regarding coverage, uniformity, the enumeration of the whole nondominated set, and necessary modifications if the underlying scalarization problem cannot be solved to optimality. In a next step, the original Box-Algorithm is extended to the case of three objective functions to compute a representative system with desired coverage error. Besides the investigation of several theoretical properties, we prove the correctness of the algorithm, derive a bound on the number of iterations needed by the algorithm to meet the desired coverage error, and propose some ideas for possible extensions.
Furthermore, we investigate the problem of selecting a subset with desired cardinality from the computed representative system, the Hypervolume Subset Selection Problem (HSSP). We provide two new formulations for the bicriteria HSSP, a linear programming formulation and a \(k\)-link shortest path formulation. For the latter formulation, we propose an algorithm for which we obtain the currently best known complexity bound for solving the bicriteria HSSP. For the tricriteria HSSP, we propose an integer programming formulation with a corresponding branch-and-bound scheme.
Moreover, we address the issue of how to present the whole set of computed representative points to the decision makers. Based on common illustration methods, we elaborate an algorithm guiding the decision makers in choosing their preferred solution.
Finally, we step back and look from a meta-level on the issue of how to combine two given optimization problems and how the resulting combinations can be related to each other. We come up with several different combined formulations and give some ideas for the practical approach.

A new algorithm for optimization problems with three objective functions is presented which computes a representation for the set of nondominated points. This representation is guaranteed to have a desired coverage error and a bound on the number of iterations needed by the algorithm to meet this coverage error is derived. Since the representation does not necessarily contain nondominated points only, ideas to calculate bounds for the representation error are given. Moreover, the incorporation of domination during the algorithm and other quality measures are discussed.

The hypervolume subset selection problem consists of finding a subset, with a given cardinality \(k\), of a set of nondominated points that maximizes the hypervolume indicator. This problem arises in selection procedures of evolutionary algorithms for multiobjective optimization, for which practically efficient algorithms are required. In this article, two new formulations are provided for the two-dimensional variant of this problem.
The first is a (linear) integer programming formulation that can be solved by solving its linear programming relaxation. The second formulation is a \(k\)-link shortest path formulation on a special digraph with the Monge property that can be solved by dynamic programming in \(\mathcal{O}(n(k + \log n))\) time. This improves upon the \(\mathcal{O}(n^2k)\) result of Bader (2009), and matches the recent result of Bringmann et al. (2014), which was developed independently from this work using different techniques. Moreover, it is shown that these bounds may be further improved under mild conditions on \(k\).

The hypervolume subset selection problem consists of finding a subset, with a given cardinality, of a nondominated set of points that maximizes the hypervolume indicator. This problem arises in selection procedures of population-based heuristics for multiobjective optimization, and for which practically efficient algorithms are strongly required. In this article, we provide two new formulations for the two-dimensional variant of this problem.
The first is an integer programming formulation that can be solved by solving its linear relaxation. The second formulation is a \(k\)-link shortest path formulation on a special digraph with Monge property that can be solved by dynamic programming in \(\mathcal{O}(n^2)\) time complexity. This improves upon the existing result of \(O(n^3)\) in Bader.