## Fachbereich Mathematik

The Bus Evacuation Problem (BEP) is a vehicle routing problem that arises in emergency planning. It models the evacuation of a region from a set of collection points to a set of capacitated shelters with the help of buses, minimizing the time needed to bring the last person out of the endangered region.
In this work, we describe multiple approaches for finding both lower and upper bounds for the BEP, and apply them in a branch and bound framework. Several node pruning techniques and branching rules are discussed. In computational experiments, we show that solution times of our approach are significantly improved compared to a commercial integer programming solver.

We consider the problem of evacuating a region with the help of buses. For a given set of possible collection points where evacuees gather, and possible shelter locations where evacuees are brought to, we need to determine both collection points and shelters we would like to use, and bus routes that evacuate the region in minimum time.
We model this integrated problem using an integer linear program, and present a branch-cut-and-price algorithm that generates bus tours in its pricing step. In computational experiments we show that our approach is able to solve instances of realistic size in sufficient time for practical application, and considerably outperforms the usage of a generic ILP solver.

By natural or man-made disasters, the evacuation of a whole region or city may become necessary. Apart from private traffic, the evacuation from collection points to secure shelters outside the endangered region will be realized by a bus fleet made available by emergency relief. The arising Bus Evacuation Problem (BEP) is a vehicle scheduling problem, in which a given number of evacuees needs to be transported from a set of collection points to a set of capacitated shelters, minimizing the total evacuation time, i.e., the time needed until the last person is brought to safety.
In this paper we consider an extended version of the BEP, the Robust Bus Evacuation Problem (RBEP), in which the exact numbers of evacuees are not known, but may stem from a set of probable scenarios. However, after a given reckoning time, this uncertainty is eliminated and planners are given exact figures. The problem is to decide for each bus, if it is better to send it right away -- using uncertain numbers of evacuees -- or to wait until the numbers become known.
We present a mixed-integer linear programming formulation for the RBEP and discuss solution approaches; in particular, we present a tabu search framework for finding heuristic solutions of acceptable quality within short computation time. In computational experiments using both randomly generated instances and the real-world scenario of evacuating the city of Kaiserslautern, we compare our solution approaches.