## Fachbereich Mathematik

### Refine

#### Keywords

- asymptotic analysis (2)
- kinetic equations (2)
- low Mach number limit (2)
- CFL type conditions (1)
- Chorin's projection scheme (1)
- Discrete velocity models (1)
- Evolution Equations (1)
- Hybrid Codes (1)
- Particle Methods (1)
- Smoothed Particle Hydrodynamics (1)
- adaptive grid generation (1)
- asymptotic preserving numerical scheme (1)
- domain decomposition (1)
- drift-diffusion limit (1)
- fixpoint theorem (1)
- fluid dynamic equations (1)
- incompressible Euler equation (1)
- incompressible Navier-Stokes equations (1)
- kinetic models (1)
- kinetic semiconductor equations (1)
- lattice Boltzmann method (1)
- linear transport equation (1)
- numerical methods for stiff equations (1)
- particle methods (1)
- second order upwind discretization (1)
- slope limiter (1)
- stability uniformly in the mean free path (1)
- stationary solutions (1)
- vehicular traffic (1)

An asymptotic preserving numerical scheme (with respect to diffusion scalings) for a linear transport equation is investigated. The scheme is adopted from a class of recently developped schemes. Stability is proven uniformly in the mean free path under a CFL type condition turning into a parabolic CFL condition in the diffusion limit.

In the paper we discuss the transition from kinetic theory to macroscopic fluid equations, where the macroscopic equations are defined as aymptotic limits of a kinetic equation. This relation can be used to derive computationally efficient domain decomposition schemes for the simulaion of rarefied gas flows close to the continuum limit. Moreover, we present some basic ideas for the derivation of kinetic induced numerical schemes for macroscopic equations, namely kinetic schemes for general conservation laws as well as Lattice-Boltzmann methods for the incompressible Navier-Stokes equations.

This survey contains a description of different types of mathematical models used for the simulation of vehicular traffic. It includes models based on ordinary differential equations, fluid dynamic equations and on equations of kinetic type. Connections between the different types of models are mentioned. Particular emphasis is put on kinetic models and on simulation methods for these models.

In the present paper a general criticism of kinetic equations for vehicular traffic is given. The necessity of introducing an Enskog-type correction into these equations is shown. An Enskog-line kinetic traffic flow equation is presented and fluid dynamic equations are derived. This derivation yields new coefficients for the standard fluid dynamic equations of vehicular traffic. Numerical simulations for inhomogeneous traffic flow situations are shown together with a comparison between kinetic and fluid dynamic models.

A nonequilibrium situation governed by kinetic equations with strongly contrasted Knudsen numbers in different subdomains is discussed. We consider a domain decomposition problem for Boltzmann- and Euler equations, establish the correct coupling conditions and prove the validity of the obtained coupled solution . Moreover numerical examples comparing different types of coupling conditions are presented.

A nonequilibrium situation governed by kinetic equations with strongly contrasted Knudsen numbers in different subdomains is discussed. We consider a domain decomposition problem for Boltzmann- and Euler equations, establish the correct coupling conditions and prove the validity of the obtained coupled solution. Moreover numerical examples comparing different types of coupling conditions are presented.

Discretizations for the Incompressible Navier-Stokes Equations based on the Lattice Boltzmann Method
(1999)

A discrete velocity model with spatial and velocity discretization based on a lattice Boltzmann method is considered in the low Mach number limit. A uniform numerical scheme for this model is investigated. In the limit, the scheme reduces to a finite difference scheme for the incompressible Navier-Stokes equation which is a projection method with a second order spatial discretization on a regular grid. The discretization is analyzed and the method is compared to Chorin's original spatial discretization. Numerical results supporting the analytical statements are presented.