## Fachbereich Mathematik

### Refine

#### Year of publication

- 2014 (15) (remove)

#### Document Type

- Doctoral Thesis (15) (remove)

#### Keywords

- Debt Management (1)
- Eikonal equation (1)
- Erwarteter Nutzen (1)
- Pedestrian FLow (1)
- Portfolio Selection (1)

This thesis focuses on dealing with some new aspects of continuous time portfolio optimization by using the stochastic control method.
First, we extend the Busch-Korn-Seifried model for a large investor by using the Vasicek model for the short rate, and that problem is solved explicitly for two types of intensity functions.
Next, we justify the existence of the constant proportion portfolio insurance (CPPI) strategy in a framework containing a stochastic short rate and a Markov switching parameter. The effect of Vasicek short rate on the CPPI strategy has been studied by Horsky (2012). This part of the thesis extends his research by including a Markov switching parameter, and the generalization is based on the B\"{a}uerle-Rieder investment problem. The explicit solutions are obtained for the portfolio problem without the Money Market Account as well as the portfolio problem with the Money Market Account.
Finally, we apply the method used in Busch-Korn-Seifried investment problem to explicitly solve the portfolio optimization with a stochastic benchmark.

This thesis, whose subject is located in the field of algorithmic commutative algebra and algebraic geometry, consists of three parts.
The first part is devoted to parallelization, a technique which allows us to take advantage of the computational power of modern multicore processors. First, we present parallel algorithms for the normalization of a reduced affine algebra A over a perfect field. Starting from the algorithm of Greuel, Laplagne, and Seelisch, we propose two approaches. For the local-to-global approach, we stratify the singular locus Sing(A) of A, compute the normalization locally at each stratum and finally reconstruct the normalization of A from the local results. For the second approach, we apply modular methods to both the global and the local-to-global normalization algorithm.
Second, we propose a parallel version of the algorithm of Gianni, Trager, and Zacharias for primary decomposition. For the parallelization of this algorithm, we use modular methods for the computationally hardest steps, such as for the computation of the associated prime ideals in the zero-dimensional case and for the standard bases computations. We then apply an innovative fast method to verify that the result is indeed a primary decomposition of the input ideal. This allows us to skip the verification step at each of the intermediate modular computations.
The proposed parallel algorithms are implemented in the open-source computer algebra system SINGULAR. The implementation is based on SINGULAR's new parallel framework which has been developed as part of this thesis and which is specifically designed for applications in mathematical research.
In the second part, we propose new algorithms for the computation of syzygies, based on an in-depth analysis of Schreyer's algorithm. Here, the main ideas are that we may leave out so-called "lower order terms" which do not contribute to the result of the algorithm, that we do not need to order the terms of certain module elements which occur at intermediate steps, and that some partial results can be cached and reused.
Finally, the third part deals with the algorithmic classification of singularities over the real numbers. First, we present a real version of the Splitting Lemma and, based on the classification theorems of Arnold, algorithms for the classification of the simple real singularities. In addition to the algorithms, we also provide insights into how real and complex singularities are related geometrically. Second, we explicitly describe the structure of the equivalence classes of the unimodal real singularities of corank 2. We prove that the equivalences are given by automorphisms of a certain shape. Based on this theorem, we explain in detail how the structure of the equivalence classes can be computed using SINGULAR and present the results in concise form. The probably most surprising outcome is that the real singularity type \(J_{10}^-\) is actually redundant.

In this thesis, we combine Groebner basis with SAT Solver in different manners.
Both SAT solvers and Groebner basis techniques have their own strength and weakness.
Combining them could fix their weakness.
The first combination is using Groebner techniques to learn additional binary clauses for SAT solver from a selection of clauses. This combination is first proposed by Zengler and Kuechlin.
However, in our experiments, about 80 percent Groebner basis computations give no new binary clauses.
By selecting smaller and more compact input for Groebner basis computations, we can significantly
reduce the number of inefficient Groebner basis computations, learn much more binary clauses. In addition,
the new strategy can reduce the solving time of a SAT Solver in general, especially for large and hard problems.
The second combination is using all-solution SAT solver and interpolation to compute Boolean Groebner bases of Boolean elimination ideals of a given ideal. Computing Boolean Groebner basis of the given ideal is an inefficient method in case we want to eliminate most of the variables from a big system of Boolean polynomials.
Therefore, we propose a more efficient approach to handle such cases.
In this approach, the given ideal is translated to the CNF formula. Then an all-solution SAT Solver is used to find the projection of all solutions of the given ideal. Finally, an algorithm, e.g. Buchberger-Moeller Algorithm, is used to associate the reduced Groebner basis to the projection.
We also optimize the Buchberger-Moeller Algorithm for lexicographical ordering and compare it with Brickenstein's interpolation algorithm.
Finally, we combine Groebner basis and abstraction techniques to the verification of some digital designs that contain complicated data paths.
For a given design, we construct an abstract model.
Then, we reformulate it as a system of polynomials in the ring \({\mathbb Z}_{2^k}[x_1,\dots,x_n]\).
The variables are ordered in a way such that the system has already been a Groebner basis w.r.t lexicographical monomial ordering.
Finally, the normal form is employed to prove the desired properties.
To evaluate our approach, we verify the global property of a multiplier and a FIR filter using the computer algebra system Singular. The result shows that our approach is much faster than the commercial verification tool from Onespin on these benchmarks.

Multilevel Constructions
(2014)

The thesis consists of the two chapters.
The first chapter is addressed to make a deep investigation of the MLMC method. In particular we take an optimisation view at the estimate. Rather than fixing the number of discretisation points \(n_i\) to be a geometric sequence, we are trying to find an optimal set up for \(n_i\) such that for a fixed error the estimate can be computed within a minimal time.
In the second chapter we propose to enhance the MLMC estimate with the weak extrapolation technique. This technique helps to improve order of a weak convergence of a scheme and as a result reduce CC of an estimate. In particular we study high order weak extrapolation approach, which is know not be inefficient in the standard settings. However, a combination of the MLMC and the weak extrapolation yields an improvement of the MLMC.

Das zinsoptimierte Schuldenmanagement hat zum Ziel, eine möglichst effiziente Abwägung zwischen den erwarteten Finanzierungskosten einerseits und den Risiken für den Staatshaushalt andererseits zu finden. Um sich diesem Spannungsfeld zu nähern, schlagen wir erstmals die Brücke zwischen den Problemstellungen des Schuldenmanagements und den Methoden der zeitkontinuierlichen, dynamischen Portfoliooptimierung.
Das Schlüsselelement ist dabei eine neue Metrik zur Messung der Finanzierungskosten, die Perpetualkosten. Diese spiegeln die durchschnittlichen zukünftigen Finanzierungskosten wider und beinhalten sowohl die bereits bekannten Zinszahlungen als auch die noch unbekannten Kosten für notwendige Anschlussfinanzierungen. Daher repräsentiert die Volatilität der Perpetualkosten auch das Risiko einer bestimmten Strategie; je langfristiger eine Finanzierung ist, desto kleiner ist die Schwankungsbreite der Perpetualkosten.
Die Perpetualkosten ergeben sich als Produkt aus dem Barwert eines Schuldenportfolios und aus der vom Portfolio unabhängigen Perpetualrate. Für die Modellierung des Barwertes greifen wir auf das aus der dynamischen Portfoliooptimierung bekannte Konzept eines selbstfinanzierenden Bondportfolios zurück, das hier auf einem mehrdimensionalen affin-linearen Zinsmodell basiert. Das Wachstum des Schuldenportfolios wird dabei durch die Einbeziehung des Primärüberschusses des Staates gebremst bzw. verhindert, indem wir diesen als externen Zufluss in das selbstfinanzierende Modell aufnehmen.
Wegen der Vielfältigkeit möglicher Finanzierungsinstrumente wählen wir nicht deren Wertanteile als Kontrollvariable, sondern kontrollieren die Sensitivitäten des Portfolios gegenüber verschiedenen Zinsbewegungen. Aus optimalen Sensitivitäten können in einem nachgelagerten Schritt dann optimale Wertanteile für verschiedenste Finanzierungsinstrumente abgeleitet werden. Beispielhaft demonstrieren wir dies mittels Rolling-Horizon-Bonds unterschiedlicher Laufzeit.
Schließlich lösen wir zwei Optimierungsprobleme mit Methoden der stochastischen Kontrolltheorie. Dabei wird stets der erwartete Nutzen der Perpetualkosten maximiert. Die Nutzenfunktionen sind jeweils an das Schuldenmanagement angepasst und zeichnen sich insbesondere dadurch aus, dass höhere Kosten mit einem niedrigeren Nutzen einhergehen. Im ersten Problem betrachten wir eine Potenznutzenfunktion mit konstanter relativer Risikoaversion, im zweiten wählen wir eine Nutzenfunktion, welche die Einhaltung einer vorgegebenen Schulden- bzw. Kostenobergrenze garantiert.

Monte Carlo simulation is one of the commonly used methods for risk estimation on financial markets, especially for option portfolios, where any analytical approximation is usually too inaccurate. However, the usually high computational effort for complex portfolios with a large number of underlying assets motivates the application of variance reduction procedures. Variance reduction for estimating the probability of high portfolio losses has been extensively studied by Glasserman et al. A great variance reduction is achieved by applying an exponential twisting importance sampling algorithm together with stratification. The popular and much faster Delta-Gamma approximation replaces the portfolio loss function in order to guide the choice of the importance sampling density and it plays the role of the stratification variable. The main disadvantage of the proposed algorithm is that it is derived only in the case of Gaussian and some heavy-tailed changes in risk factors.
Hence, our main goal is to keep the main advantage of the Monte Carlo simulation, namely its ability to perform a simulation under alternative assumptions on the distribution of the changes in risk factors, also in the variance reduction algorithms. Step by step, we construct new variance reduction techniques for estimating the probability of high portfolio losses. They are based on the idea of the Cross-Entropy importance sampling procedure. More precisely, the importance sampling density is chosen as the closest one to the optimal importance sampling density (zero variance estimator) out of some parametric family of densities with respect to Kullback - Leibler cross-entropy. Our algorithms are based on the special choices of the parametric family and can now use any approximation of the portfolio loss function. A special stratification is developed, so that any approximation of the portfolio loss function under any assumption of the distribution of the risk factors can be used. The constructed algorithms can easily be applied for any distribution of risk factors, no matter if light- or heavy-tailed. The numerical study exhibits a greater variance reduction than of the algorithm from Glasserman et al. The use of a better approximation may improve the performance of our algorithms significantly, as it is shown in the numerical study.
The literature on the estimation of the popular market risk measures, namely VaR and CVaR, often refers to the algorithms for estimating the probability of high portfolio losses, describing the corresponding transition process only briefly. Hence, we give a consecutive discussion of this problem. Results necessary to construct confidence intervals for both measures under the mentioned variance reduction procedures are also given.

Pedestrian Flow Models
(2014)

There have been many crowd disasters because of poor planning of the events. Pedestrian models are useful in analysing the behavior of pedestrians in advance to the events so that no pedestrians will be harmed during the event. This thesis deals with pedestrian flow models on microscopic, hydrodynamic and scalar scales. By following the Hughes' approach, who describes the crowd as a thinking fluid, we use the solution of the Eikonal equation to compute the optimal path for pedestrians. We start with the microscopic model for pedestrian flow and then derive the hydrodynamic and scalar models from it. We use particle methods to solve the governing equations. Moreover, we have coupled a mesh free particle method to the fixed grid for solving the Eikonal equation. We consider an example with a large number of pedestrians to investigate our models for different settings of obstacles and for different parameters. We also consider the pedestrian flow in a straight corridor and through T-junction and compare our numerical results with the experiments. A part of this work is devoted for finding a mesh free method to solve the Eikonal equation. Most of the available methods to solve the Eikonal equation are restricted to either cartesian grid or triangulated grid. In this context, we propose a mesh free method to solve the Eikonal equation, which can be applicable to any arbitrary grid and useful for the complex geometries.

In 2006 Jeffrey Achter proved that the distribution of divisor class groups of degree 0 of function fields with a fixed genus and the distribution of eigenspaces in symplectic similitude groups are closely related to each other. Gunter Malle proposed that there should be a similar correspondence between the distribution of class groups of number fields and the distribution of eigenspaces in ceratin matrix groups. Motivated by these results and suggestions we study the distribution of eigenspaces corresponding to the eigenvalue one in some special subgroups of the general linear group over factor rings of rings of integers of number fields and derive some conjectural statements about the distribution of \(p\)-parts of class groups of number fields over a base field \(K_{0}\). Where our main interest lies in the case that \(K_{0}\) contains the \(p\)th roots of unity, because in this situation the \(p\)-parts of class groups seem to behave in an other way like predicted by the popular conjectures of Henri Cohen and Jacques Martinet. In 2010 based on computational data Malle has succeeded in formulating a conjecture in the spirit of Cohen and Martinet for this case. Here using our investigations about the distribution in matrixgroups we generalize the conjecture of Malle to a more abstract level and establish a theoretical backup for these statements.

This thesis is devoted to the computational aspects of intersection theory and enumerative geometry. The first results are a Sage package Schubert3 and a Singular library schubert.lib which both provide the key functionality necessary for computations in intersection theory and enumerative geometry. In particular, we describe an alternative method for computations in Schubert calculus via equivariant intersection theory. More concretely, we propose an explicit formula for computing the degree of Fano schemes of linear subspaces on hypersurfaces. As a special case, we also obtain an explicit formula for computing the number of linear subspaces on a general hypersurface when this number is finite. This leads to a much better performance than classical Schubert calculus.
Another result of this thesis is related to the computation of Gromov-Witten invariants. The most powerful method for computing Gromov-Witten invariants is the localization of moduli spaces of stable maps. This method was introduced by Kontsevich in 1995. It allows us to compute Gromov-Witten invariants via Bott's formula. As an insightful application, we computed the numbers of rational curves on general complete intersection Calabi-Yau threefolds in projective spaces up to degree six. The results are all in agreement with predictions made from mirror symmetry.

Die Dissertation "Portfoliooptimierung im Binomialmodell" befasst sich mit der Frage, inwieweit
das Problem der optimalen Portfolioauswahl im Binomialmodell lösbar ist bzw. inwieweit
die Ergebnisse auf das stetige Modell übertragbar sind. Dabei werden neben dem
klassischen Modell ohne Kosten und ohne Veränderung der Marktsituation auch Modellerweiterungen
untersucht.