## Fachbereich Maschinenbau und Verfahrenstechnik

### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (47)
- Preprint (6)
- Habilitation (3)

#### Language

- English (56) (remove)

#### Keywords

- Diffusion, Viscosity, and Thermodynamics in Liquid Systems (2005)
- This thesis aims at an overall improvement of the diffusion coefficient predictions. For this reason the theoretical determination of diffusion, viscosity, and thermodynamics in liquid systems is discussed. Furthermore, the experimental determination of diffusion coefficients is also part of this work. All investigations presented are carried out for organic binary liquid mixtures. Diffusion coefficient data of 9 highly nonideal binary mixtures are reported over the whole concentration range at various temperatures, (25, 30, and 35) °C. All mixtures investigated in a Taylor dispersion apparatus consist of an alcohol (ethanol, 1-propanol, or 1-butanol) dissolved in hexane, cyclohexane, carbon tetrachloride, or toluene. The uncertainty of the reported data is estimated to be within 310-11 m2s-1. To compute the thermodynamic correction factor an excess Gibbs energy model is required. Therefore, the applicability of COSMOSPACE to binary VLE predictions is thoroughly investigated. For this purpose a new method is developed to determine the required molecular parameters such as segment types, areas, volumes, and interaction parameters. So-called sigma profiles form the basis of this approach which describe the screening charge densities appearing on a molecule’s surface. To improve the prediction results a constrained two-parameter fitting strategy is also developed. These approaches are crucial to guarantee the physical significance of the segment parameters. Finally, the prediction quality of this approach is compared to the findings of the Wilson model, UNIQUAC, and the a priori predictive method COSMO-RS for a broad range of thermodynamic situations. The results show that COSMOSPACE yields results of similar quality compared to the Wilson model, while both perform much better than UNIQUAC and COSMO-RS. Since viscosity influences also the diffusion process, a new mixture viscosity model has been developed on the basis of Eyring’s absolute reaction rate theory. The nonidealities of the mixture are accounted for with the thermodynamically consistent COSMOSPACE approach. The required model and component parameters are derived from sigma-profiles, which form the basis of the a priori predictive method COSMO-RS. To improve the model performance two segment parameters are determined from a least-squares analysis to experimental viscosity data, whereas a constraint optimisation procedure is applied. In this way the parameters retain their physical meaning. Finally, the viscosity calculations of this approach are compared to the findings of the Eyring-UNIQUAC model for a broad range of chemical mixtures. These results show that the new Eyring-COSMOSPACE approach is superior to the frequently employed Eyring-UNIQUAC method. Finally, on the basis of Eyring’s absolute reaction rate theory a new model for the Maxwell-Stefan diffusivity has been developed. This model, an extension of the Vignes equation, describes the concentration dependence of the diffusion coefficient in terms of the diffusivities at infinite dilution and an additional excess Gibbs energy contribution. This energy part allows the explicit consideration of thermodynamic nonidealities within the modelling of this transport property. If the same set of interaction parameters, which has been derived from VLE data, is applied for this part and for the thermodynamic correction, a theoretically sound modelling of VLE and diffusion can be achieved. The influence of viscosity and thermodynamics on the model accuracy is thoroughly investigated. For this purpose diffusivities of 85 binary mixtures consisting of alkanes, cycloalkanes, halogenated alkanes, aromatics, ketones, and alcohols are computed. The average relative deviation between experimental data and computed values is approximately 8 % depending on the choice of the gE-model. These results indicate that this model is superior to some widely used methods. In summary, it can be said that the new approach facilitates the prediction of diffusion coefficients. The final equation is mathematically simple, universally applicable, and the prediction quality is as good as other models recently developed without having to worry about additional parameters, like pure component physical property data, self diffusion coefficients, or mixture viscosities. In contrast to many other models, the influence of the mixture viscosity can be omitted. Though a viscosity model is not required in the prediction of diffusion coefficients with the new equation, the models presented in this work allow a consistent modelling approach of diffusion, viscosity, and thermodynamics in liquid systems.

- Computational Modeling of Domain Switching Effects in Piezoceramic Materials -- A Micro-Macro Mechanical Approach (2005)
- Within the last decades, a remarkable development in materials science took place -- nowadays, materials are not only constructed for the use of inert structures but rather designed for certain predefined functions. This innovation was accompanied with the appearance of smart materials with reliable recognition, discrimination and capability of action as well as reaction. Even though ferroelectric materials serve smartly in real applications, they also possess several restrictions at high performance usage. The behavior of these materials is almost linear under the action of low electric fields or low mechanical stresses, but exhibits strong non-linear response under high electric fields or mechanical stresses. High electromechanical loading conditions result in a change of the spontaneous polarization direction with respect to individual domains, which is commonly referred to as domain switching. The aim of the present work is to develop a three-dimensional coupled finite element model, to study the rate-independent and rate-dependent behavior of piezoelectric materials including domain switching based on a micromechanical approach. The proposed model is first elaborated within a two-dimensional finite element setting for piezoelectric materials. Subsequently, the developed two-dimensional model is extended to the three-dimensional case. This work starts with developing a micromechanical model for ferroelectric materials. Ferroelectric materials exhibit ferroelectric domain switching, which refers to the reorientation of domains and occurs under purely electrical loading. For the simulation, a bulk piezoceramic material is considered and each grain is represented by one finite element. In reality, the grains in the bulk ceramics material are randomly oriented. This property is taken into account by applying random orientation as well as uniform distribution for individual elements. Poly-crystalline ferroelectric materials at un-poled virgin state can consequently be characterized by randomly oriented polarization vectors. Energy reduction of individual domains is adopted as a criterion for the initiation of domain switching processes. The macroscopic response of the bulk material is predicted by classical volume-averaging techniques. In general, domain switching does not only depend on external loads but also on neighboring grains, which is commonly denoted as the grain boundary effect. These effects are incorporated into the developed framework via a phenomenologically motivated probabilistic approach by relating the actual energy level to a critical energy level. Subsequently, the order of the chosen polynomial function is optimized so that simulations nicely match measured data. A rate-dependent polarization framework is proposed, which is applied to cyclic electrical loading at various frequencies. The reduction in free energy of a grain is used as a criterion for the onset of the domain switching processes. Nucleation in new grains and propagation of the domain walls during domain switching is modeled by a linear kinetics theory. The simulated results show that for increasing loading frequency the macroscopic coercive field is also increasing and the remanent polarization increases at lower loading amplitudes. The second part of this work is focused on ferroelastic domain switching, which refers to the reorientation of domains under purely mechanical loading. Under sufficiently high mechanical loading, however, the strain directions within single domains reorient with respect to the applied loading direction. The reduction in free energy of a grain is used as a criterion for the domain switching process. The macroscopic response of the bulk material is computed for the hysteresis curve (stress vs strain) whereby uni-axial and quasi-static loading conditions are applied on the bulk material specimen. Grain boundary effects are addressed by incorporating the developed probabilistic approach into this framework and the order of the polynomial function is optimized so that simulations match measured data. Rate dependent domain switching effects are captured for various frequencies and mechanical loading amplitudes by means of the developed volume fraction concept which relates the particular time interval to the switching portion. The final part of this work deals with ferroelectric and ferroelastic domain switching and refers to the reorientation of domains under coupled electromechanical loading. If this free energy for combined electromechanical loading exceeds the critical energy barrier elements are allowed to switch. Firstly, hysteresis and butterfly curves under purely electrical loading are discussed. Secondly, additional mechanical loads in axial and lateral directions are applied to the specimen. The simulated results show that an increasing compressive stress results in enlarged domain switching ranges and that the hysteresis and butterfly curves flatten at higher mechanical loading levels.

- Recycling of Ground Tyre Rubber and Polyolefin Wastes by Producing Thermoplastic Elastomers (2005)
- This thesis deals with the development of thermoplastic polyolefin elastomers using recycled polyolefins and ground tyre rubber (GTR). The disposal of worn tyres and their economic recycling mean a great challenge nowadays. Material recycling is a preferred way in Europa owing to legislative actions and ecological arguments. This first step with worn tyres is already done in this direc-tion as GTR is available in different fractions in guaranteed quality. As the traditional applications of GTR are saturated, there is a great demand for new, value-added products containing GTR. So, the objective of this work was to convert GTR by reac-tive blending with polyolefins into thermoplastic elastomers (TPE) of suitable me-chanical and rheological properties. It has been established that bituminous reclamation of GTR prior to extrusion melt compounding with polyolefins is a promising way of TPE production. By this way the sol-content (acetone soluble fraction) of the GTR increases and the GTR particles can be better incorporated in the corresponding polyolefin matrix. The adhesion be-tween GTR and matrix is given by molecular intermingling in the resulting interphase. GTR particles of various production and mean particle size were involved in this study. As polyolefins recycled low-density polyethylene (LDPE), recycled high-density polyethylene (HDPE) and polypropylene (PP) were selected. First, the opti-mum conditions for the GTR reclamation in bitumen were established (160 °C < T < 180 °C; time ca. 4 hours). Polyolefin based TPEs were produced after GTR reclamation in extrusion compounding. Their mechanical (tensile behaviour, set properties), thermal (dynamic-mechanical thermal analysis, differential scanning calorimetry) and rheological properties (both in low- and high-shear rates ) were determined. The PE-based blends contained an ethylene/propylene/diene (EPDM) rubber as compatibilizer and their composition was as follows: PE/EPDM/GTR:bitumen = 50/25/25:25. The selected TPEs met the most important criterion, i.e. elongation at break > 100 %; compression set < 50%. The LDPE-based TPE (TPE(LDPE)) showed better me-chanical performance compared to the TPE(HDPE). This was assigned to the higher crystallinity of the HDPE. The PP-based blends of the compositions PP/(GTR-bitumen) 50/50 and 25/75, whereby the ratio of GTR/bitumen was 60/40, outperformed those containing non-reclaimed GTR. The related blends showed also a better compatibility with a PP-based commercial thermoplastic dynamic vulcanizate (TDV). Surprisingly, the mean particle size of the GTR, varied between < 0.2 and 0.4-0.7 mm, had a small effect on the mechanical properties, however somewhat larger for the rheological behaviour of the TPEs produced.

- On Aspects of Mixed Continuum-Atomistic Material Modelling (2004)
- In the present work, various aspects of the mixed continuum-atomistic modelling of materials are studied, most of which are related to the problems arising due to a development of microstructures during the transition from an elastic to plastic description within the framework of continuum-atomistics. By virtue of the so-called Cauchy-Born hypothesis, which is an essential part of the continuum-atomistics, a localization criterion has been derived in terms of the loss of infinitesimal rank-one convexity of the strain energy density. According to this criterion, a numerical yield condition has been computed for two different interatomic energy functions. Therewith, the range of the Cauchy-Born rule validity has been defined, since the strain energy density remains quasiconvex only within the computed yield surface. To provide a possibility to continue the simulation of material response after the loss of quasiconvexity, a relaxation procedure proposed by Tadmor et al. leading necessarily to the development of microstructures has been used. Thereby, various notions of convexity have been overviewed in details. Alternatively to the above mentioned criterion, a stability criterion has been applied to detect the critical deformation. For the study in the postcritical region, the path-change procedure proposed by Wagner and Wriggers has been adapted for the continuum-atomistic and modified. To capture the deformation inhomogeneity arising due to the relaxation, the Cauchy-Born hypothesis has been extended by assumption that it represents only the 1st term in the Taylor's series expansion of the deformation map. The introduction of the 2nd, quadratic term results in the higher-order materials theory. Based on a simple computational example, the relevance of this theory in the postcritical region has been shown. For all simulations including the finite element examples, the development tool MATLAB 6.5 has been used.

- Solution Methodologies for the Population Balance Equations Describing the Hydrodynamics of Liquid-Liquid Extraction Contactors (2004)
- The polydispersive nature of the turbulent droplet swarm in agitated liquid-liquid contacting equipment makes its mathematical modelling and the solution methodologies a rather sophisticated process. This polydispersion could be modelled as a population of droplets randomly distributed with respect to some internal properties at a specific location in space using the population balance equation as a mathematical tool. However, the analytical solution of such a mathematical model is hardly to obtain except for particular idealized cases, and hence numerical solutions are resorted to in general. This is due to the inherent nonlinearities in the convective and diffusive terms as well as the appearance of many integrals in the source term. In this work two conservative discretization methodologies for both internal (droplet state) and external (spatial) coordinates are extended and efficiently implemented to solve the population balance equation (PBE) describing the hydrodynamics of liquid-liquid contacting equipment. The internal coordinate conservative discretization techniques of Kumar and Ramkrishna (1996a, b) originally developed for the solution of PBE in simple batch systems are extended to continuous flow systems and validated against analytical solutions as well as published experimental droplet interaction functions and hydrodynamic data. In addition to these methodologies, we presented a conservative discretization approach for droplet breakage in batch and continuous flow systems, where it is found to have identical convergence characteristics when compared to the method of Kumar and Ramkrishna (1996a). Apart from the specific discretization schemes, the numerical solution of droplet population balance equations by discretization is known to suffer from inherent finite domain errors (FDE). Two approaches that minimize the total FDE during the solution of the discrete PBEs using an approximate optimal moving (for batch) and fixed (for continuous systems) grids are introduced (Attarakih, Bart & Faqir, 2003a). As a result, significant improvements are achieved in predicting the number densities, zero and first moments of the population. For spatially distributed populations (such as extraction columns) the resulting system of partial differential equations is spatially discretized in conservative form using a simplified first order upwind scheme as well as first and second order nonoscillatory central differencing schemes (Kurganov & Tadmor, 2000). This spatial discretization avoids the characteristic decomposition of the convective flux based on the approximate Riemann Solvers and the operator splitting technique required by classical upwind schemes (Karlsen et al., 2001). The time variable is discretized using an implicit strongly stable approach that is formulated by careful lagging of the nonlinear parts of the convective and source terms. The present algorithms are tested against analytical solutions of the simplified PBE through many case studies. In all these case studies the discrete models converges successfully to the available analytical solutions and to solutions on relatively fine grids when the analytical solution is not available. This is accomplished by deriving five analytical solutions of the PBE in continuous stirred tank and liquid-liquid extraction column for especial cases of breakage and coalescence functions. As an especial case, these algorithms are implemented via a windows computer code called LLECMOD (Liquid-Liquid Extraction Column Module) to simulate the hydrodynamics of general liquid-liquid extraction columns (LLEC). The user input dialog makes the LLECMOD a user-friendly program that enables the user to select grids, column dimensions, flow rates, velocity models, simulation parameters, dispersed and continuous phases chemical components, and droplet phase space-time solvers. The graphical output within the windows environment adds to the program a distinctive feature and makes it very easy to examine and interpret the results very quickly. Moreover, the dynamic model of the dispersed phase is carefully treated to correctly predict the oscillatory behavior of the LLEC hold up. In this context, a continuous velocity model corresponding to the manipulation of the inlet continuous flow rate through the control of the dispersed phase level is derived to get rid of this behavior.

- Theory and Numerics of Open System Thermodynamics (2004)
- A general framework for the thermodynamics of open systems is developed in the spatial and the material setting. Special emphasis is placed on the balance of mass which is enhanced by additional source and flux terms. Different solution strategies within the finite element technique are derived and compared. A number of numerical examples illustrates the features of the proposed approach.

- Conserving Time Integrators for Nonlinear Elastodynamics (2004)
- In this thesis, the enhanced Galerkin (eG) finite element method in time is presented. The eG method leads to higher order accurate energy and momentum conserving time integrators for the underlying finite-dimensional Hamiltonian systems. This thesis is concerned with particle dynamics and semi-discrete nonlinear elastodynamics. The conservation is generally related to the collocation property of the eG method. The momentum conservation renders the Gaussian quadrature and the energy conservation is obtained by using a new projection technique. An objective time discretisation of the used strain measures avoids artificial strains for large superimposed rigid body motions. The numerical examples show the well long term performance in the presence of stiffness as well as for calculating large-strain motions.

- Theory and numerics of higher gradient inelastic material behavior (2003)
- The goal of this thesis is a physically motivated and thermodynamically consistent formulation of higher gradient inelastic material behavior. Thereby, the influence of the material microstructure is incorporated. Next to theoretical aspects, the thesis is complemented with the algorithmic treatment and numerical implementation of the derived model. Hereby, two major inelastic effects will be addressed: on the one hand elasto-plastic processes and on the other hand damage mechanisms, which will both be modeled within a continuum mechanics framework.

- New Possibilities for Building High-Vacuum Chambers Using Glued Aluminum Plates and Application to Sputtered Nanocomposite Coatings (2002)
- In this work the investigation of a (Ti, Al, Si) N system was done. The main point of investigation was to study the possibility of getting the nanocomposite coatings structures by deposition of multilayer films from TiN, AlSiN, . This tries to understand the relation between the mechanical properties (hardness, Young s modulus), and the microstructure (nanocrystalline with individual phases). Particularly special attention was given to the temperature effects on microstructural changes in annealing at 600 °C for the coatings. The surface hardness, elastic modulus, and the multilayers diffusion and compositions were the test tools for the comparison between the different coated samples with and without annealing at 600 °C. To achieve this object a rectangular aluminum vacuum chamber with three unbalanced sputtering magnetrons for the deposition of thin film coatings from different materials was constructed The chamber consists mainly of two chambers, the pre-vacuum chamber to load the workpiece, and the main vacuum chamber where the sputtering deposition of the thin film coatings take place. The workpiece is moving on a car travel on a railway between the two chambers to the position of the magnetrons by step motors. The chambers are divided by a self constructed rectangular gate controlled manually from outside the chamber. The chamber was sealed for vacuum use using glue and screws. Therefore, different types of glue were tested not only for its ability to develop an uniform thin layer in the gap between the aluminum plates to seal the chamber for vacuum use, but also low outgassing rates which made it suitable for vacuum use. A epoxy was able to fulfill this tasks. The evacuation characteristics of the constructed chamber was improved by minimizing the inner surface outgassing rate. Therefore, the throughput outgassing rate test method was used in the comparisons between the selected two aluminum materials (A2017 and A5353) samples short time period (one hour) outgassing rates. Different machining methods and treatments for the inner surface of the vacuum chamber were tested. The machining of the surface of material A (A2017) with ethanol as coolant fluid was able to reduce its outgassing rate a factor of 6 compared with a non-machined sample surface of the same material. The reduction of the surface porous oxide layer on the top of the aluminum surface by the pickling process with HNO3 acid, and the protection of it by producing another passive non-porous oxides layer using anodizing process will protect the surface for longer time and will minimize the outgassing rates even under humid atmosphere The residual gas analyzer (RGA) 6. Summary test shows that more than 85% of the gases inside the test chamber were water vapour (H2O) and the rests are (N2, H2, CO), so liquid nitrogen water vapor trap can enhance the chamber pumping down process. As a result it was possible to construct a chamber that can be pumped down using a turbo molecular pump (450 L/s) to the range of 1x10-6 mbar within one hour of evacuations where the chamber volume is 160 Litters and the inner surface area is 1.6 m2. This is a good base pressure for the process of sputtering deposition of hard thin film coatings. Multilayer thin film coating was deposited to demonstrate that nanostructured thin film within the (Ti, Al, Si) N system could be prepared by reactive magnetron sputtering of multi thin film layers of TiN, AlSiN. The (SNMS) spectrometry of the test samples show that a complete diffusion between the different deposited thin film coating layers in each sample takes place, even at low substrate deposition temperature. The high magnetic flux of the unbalanced magnetrons and the high sputtering power were able to produce a high ion-toatom flux, which give high mobility to the coated atoms. The interactions between the high mobility of the coated atoms and the ion-to-atom flux were sufficient to enhance the diffusion between the different deposited thin layers. It was shown from the XRD patterns for this system that the structure of the formed mixture consists of two phases. One phase is noted as TiN bulk and another detected unknown amorphous phase, which can be SiNx or AlN or a combination of Ti-Al-Si-N. As a result we where able to deposit a nanocomposite coatings by the deposition of multilayers from TiN, AlSiN thin film coatings using the constructed vacuum chamber

- Modelling and Computation of Geometrically Nonlinear Anisotropic Inelasticity (2002)
- Based on the framework of continuum mechanics two different concepts to formulate phenomenological anisotropic inelasticity are developed in a thermodynamically consistent manner. On the one hand, special emphasis is placed on the incorporation of structural tensors while on the other hand, fictitious configurations are introduced. Substantial parts of this work deal with the numerical treatment of the presented theory within the finite element method.