## Fachbereich Maschinenbau und Verfahrenstechnik

### Filtern

#### Erscheinungsjahr

- 2004 (4) (entfernen)

#### Dokumenttyp

- Dissertation (3)
- Habilitation (1)

#### Sprache

- Englisch (4) (entfernen)

#### Schlagworte

- Biomechanik (1)
- Cauchy-Born rule (1)
- Conservation laws (1)
- Droplet breakage (1)
- Droplet coalescence (1)
- Erhaltungsgleichungen (1)
- Finite-Elemente-Methode (1)
- Flüssig-Flüssig-Extraktion (1)
- Hamiltonian systems (1)
- Hydrodynamics (1)

- On Aspects of Mixed Continuum-Atomistic Material Modelling (2004)
- In the present work, various aspects of the mixed continuum-atomistic modelling of materials are studied, most of which are related to the problems arising due to a development of microstructures during the transition from an elastic to plastic description within the framework of continuum-atomistics. By virtue of the so-called Cauchy-Born hypothesis, which is an essential part of the continuum-atomistics, a localization criterion has been derived in terms of the loss of infinitesimal rank-one convexity of the strain energy density. According to this criterion, a numerical yield condition has been computed for two different interatomic energy functions. Therewith, the range of the Cauchy-Born rule validity has been defined, since the strain energy density remains quasiconvex only within the computed yield surface. To provide a possibility to continue the simulation of material response after the loss of quasiconvexity, a relaxation procedure proposed by Tadmor et al. leading necessarily to the development of microstructures has been used. Thereby, various notions of convexity have been overviewed in details. Alternatively to the above mentioned criterion, a stability criterion has been applied to detect the critical deformation. For the study in the postcritical region, the path-change procedure proposed by Wagner and Wriggers has been adapted for the continuum-atomistic and modified. To capture the deformation inhomogeneity arising due to the relaxation, the Cauchy-Born hypothesis has been extended by assumption that it represents only the 1st term in the Taylor's series expansion of the deformation map. The introduction of the 2nd, quadratic term results in the higher-order materials theory. Based on a simple computational example, the relevance of this theory in the postcritical region has been shown. For all simulations including the finite element examples, the development tool MATLAB 6.5 has been used.

- Solution Methodologies for the Population Balance Equations Describing the Hydrodynamics of Liquid-Liquid Extraction Contactors (2004)
- The polydispersive nature of the turbulent droplet swarm in agitated liquid-liquid contacting equipment makes its mathematical modelling and the solution methodologies a rather sophisticated process. This polydispersion could be modelled as a population of droplets randomly distributed with respect to some internal properties at a specific location in space using the population balance equation as a mathematical tool. However, the analytical solution of such a mathematical model is hardly to obtain except for particular idealized cases, and hence numerical solutions are resorted to in general. This is due to the inherent nonlinearities in the convective and diffusive terms as well as the appearance of many integrals in the source term. In this work two conservative discretization methodologies for both internal (droplet state) and external (spatial) coordinates are extended and efficiently implemented to solve the population balance equation (PBE) describing the hydrodynamics of liquid-liquid contacting equipment. The internal coordinate conservative discretization techniques of Kumar and Ramkrishna (1996a, b) originally developed for the solution of PBE in simple batch systems are extended to continuous flow systems and validated against analytical solutions as well as published experimental droplet interaction functions and hydrodynamic data. In addition to these methodologies, we presented a conservative discretization approach for droplet breakage in batch and continuous flow systems, where it is found to have identical convergence characteristics when compared to the method of Kumar and Ramkrishna (1996a). Apart from the specific discretization schemes, the numerical solution of droplet population balance equations by discretization is known to suffer from inherent finite domain errors (FDE). Two approaches that minimize the total FDE during the solution of the discrete PBEs using an approximate optimal moving (for batch) and fixed (for continuous systems) grids are introduced (Attarakih, Bart & Faqir, 2003a). As a result, significant improvements are achieved in predicting the number densities, zero and first moments of the population. For spatially distributed populations (such as extraction columns) the resulting system of partial differential equations is spatially discretized in conservative form using a simplified first order upwind scheme as well as first and second order nonoscillatory central differencing schemes (Kurganov & Tadmor, 2000). This spatial discretization avoids the characteristic decomposition of the convective flux based on the approximate Riemann Solvers and the operator splitting technique required by classical upwind schemes (Karlsen et al., 2001). The time variable is discretized using an implicit strongly stable approach that is formulated by careful lagging of the nonlinear parts of the convective and source terms. The present algorithms are tested against analytical solutions of the simplified PBE through many case studies. In all these case studies the discrete models converges successfully to the available analytical solutions and to solutions on relatively fine grids when the analytical solution is not available. This is accomplished by deriving five analytical solutions of the PBE in continuous stirred tank and liquid-liquid extraction column for especial cases of breakage and coalescence functions. As an especial case, these algorithms are implemented via a windows computer code called LLECMOD (Liquid-Liquid Extraction Column Module) to simulate the hydrodynamics of general liquid-liquid extraction columns (LLEC). The user input dialog makes the LLECMOD a user-friendly program that enables the user to select grids, column dimensions, flow rates, velocity models, simulation parameters, dispersed and continuous phases chemical components, and droplet phase space-time solvers. The graphical output within the windows environment adds to the program a distinctive feature and makes it very easy to examine and interpret the results very quickly. Moreover, the dynamic model of the dispersed phase is carefully treated to correctly predict the oscillatory behavior of the LLEC hold up. In this context, a continuous velocity model corresponding to the manipulation of the inlet continuous flow rate through the control of the dispersed phase level is derived to get rid of this behavior.

- Theory and Numerics of Open System Thermodynamics (2004)
- A general framework for the thermodynamics of open systems is developed in the spatial and the material setting. Special emphasis is placed on the balance of mass which is enhanced by additional source and flux terms. Different solution strategies within the finite element technique are derived and compared. A number of numerical examples illustrates the features of the proposed approach.

- Conserving Time Integrators for Nonlinear Elastodynamics (2004)
- In this thesis, the enhanced Galerkin (eG) finite element method in time is presented. The eG method leads to higher order accurate energy and momentum conserving time integrators for the underlying finite-dimensional Hamiltonian systems. This thesis is concerned with particle dynamics and semi-discrete nonlinear elastodynamics. The conservation is generally related to the collocation property of the eG method. The momentum conservation renders the Gaussian quadrature and the energy conservation is obtained by using a new projection technique. An objective time discretisation of the used strain measures avoids artificial strains for large superimposed rigid body motions. The numerical examples show the well long term performance in the presence of stiffness as well as for calculating large-strain motions.