## Fachbereich Maschinenbau und Verfahrenstechnik

- On the Extended Finite Element Method for the Elasto-Plastic Deformation of Heterogeneous Materials (2015)
- This thesis is concerned with the extended finite element method (XFEM) for deformation analysis of three-dimensional heterogeneous materials. Using the "enhanced abs enrichment" the XFEM is able to reproduce kinks in the displacements and therewith jumps in the strains within elements of the underlying tetrahedral finite element mesh. A complex model for the micro structure reconstruction of aluminum matrix composite AMC225xe and the modeling of its macroscopic thermo-mechanical plastic deformation behavior is presented, using the XFEM. Additionally, a novel stabilization algorithm is introduced for the XFEM. This algorithm requires preprocessing only.

- Analysis and Computation of Solid Interfaces on the Meso Scale (2008)
- The present thesis is concerned with the simulation of the loading behaviour of both hybrid lightweight structures and piezoelectric mesostructures, with a special focus on solid interfaces on the meso scale. Furthermore, an analytical review on bifurcation modes of continuum-interface problems is included. The inelastic interface behaviour is characterised by elastoplastic, viscous, damaging and fatigue-motivated models. For related numerical computations, the Finite Element Method is applied. In this context, so-called interface elements play an important role. The simulation results are reflected by numerous examples which are partially correlated to experimental data.

- Theory and numerics of non-classical thermo-hyperelasticity (2007)
- Thermoelasticity represents the fusion of the fields of heat conduction and elasticity in solids and is usually characterized by a twofold coupling. Thermally induced stresses can be determined as well as temperature changes caused by deformations. Studying the mutual influence is subject of thermoelasticity. Usually, heat conduction in solids is based on Fourier’s law which describes a diffusive process. It predicts unnatural infinite transmission speed for parts of local heat pulses. At room temperature, for example, these parts are strongly damped. Thus, in these cases most engineering applications are described satisfactorily by the classical theory. However, in some situations the predictions according to Fourier’s law fail miserable. One of these situations occurs at temperatures near absolute zero, where the phenomenon of second sound1 was discovered in the 20th century. Consequently, non-classical theories experienced great research interest during the recent decades. Throughout this thesis, the expression “non-classical” refers to the fact that the constitutive equation of the heat flux is not based on Fourier’s law. Fourier’s classical theory hypothesizes that the heat flux is proportional to the temperature gradient. A new thermoelastic theory, on the one hand, needs to be consistent with classical thermoelastodynamics and, on the other hand, needs to describe second sound accurately. Hence, during the second half of the last century the traditional parabolic heat equation was replaced by a hyperbolic one. Its coupling with elasticity leads to non-classical thermomechanics which allows the modeling of second sound, provides a passage to the classical theory and additionally overcomes the paradox of infinite wave speed. Although much effort is put into non-classical theories, the thermoelastodynamic community has not yet agreed on one approach and a systematic research is going on worldwide.Computational methods play an important role for solving thermoelastic problems in engineering sciences. Usually this is due to the complex structure of the equations at hand. This thesis aims at establishing a basic theory and numerical treatment of non-classical thermoelasticity (rather than dealing with special cases). The finite element method is already widely accepted in the field of structural solid mechanics and enjoys a growing significance in thermal analyses. This approach resorts to a finite element method in space as well as in time.