## Fachbereich Maschinenbau und Verfahrenstechnik

### Filtern

#### Dokumenttyp

- Preprint (9) (entfernen)

#### Sprache

- Englisch (9) (entfernen)

#### Schlagworte

- NURBS (3)
- CORBA (2)
- Isogeometric Analysis (2)
- Interpolation of rotations (1)
- CAx (1)
- CAx Technology (1)
- Collaborative Design (1)
- Correspondence with other notations (1)
- Design Patterns (1)
- Domain decomposition (1)

- Treatment of Reissner–Mindlin shells with kinks without the need for drilling rotation stabilization in an isogeometric framework (2014)
- This work presents a framework for the computation of complex geometries containing intersections of multiple patches with Reissner-Mindlin shell elements. The main objective is to provide an isogeometric finite element implementation which neither requires drilling rotation stabilization, nor user interaction to quantify the number of rotational degrees of freedom for every node. For this purpose, the following set of methods is presented. Control points with corresponding physical location are assigned to one common node for the finite element solution. A nodal basis system in every control point is defined, which ensures an exact interpolation of the director vector throughout the whole domain. A distinction criterion for the automatic quantification of rotational degrees of freedom for every node is presented. An isogeometric Reissner-Mindlin shell formulation is enhanced to handle geometries with kinks and allowing for arbitrary intersections of patches. The parametrization of adjacent patches along the interface has to be conforming. The shell formulation is derived from the continuum theory and uses a rotational update scheme for the current director vector. The nonlinear kinematic allows the computation of large deformations and large rotations. Two concepts for the description of rotations are presented. The first one uses an interpolation which is commonly used in standard Lagrange-based shell element formulations. The second scheme uses a more elaborate concept proposed by the authors in prior work, which increases the accuracy for arbitrary curved geometries. Numerical examples show the high accuracy and robustness of both concepts. The applicability of the proposed framework is demonstrated.

- Isogeometric Reissner–Mindlin shell analysis with exactly calculated director vectors (2012)
- An isogeometric Reissner-Mindlin shell derived from the continuum theory is presented. The geometry is described by NURBS surfaces. The kinematic description of the employed shell theory requires the interpolation of the director vector and of a local basis system. Hence, the definition of nodal basis systems at the control points is necessary for the proposed formulation. The control points are in general not located on the shell reference surface and thus, several choices for the nodal values are possible. The proposed new method uses the higher continuity of the geometrical description to calculate nodal basis system and director vectors which lead to geometrical exact interpolated values thereof. Thus, the initial director vector coincides with the normal vector even for the coarsest mesh. In addition to that a more accurate interpolation of the current director and its variation is proposed. Instead of the interpolation of nodal director vectors the new approach interpolates nodal rotations. Account is taken for the discrepancy between interpolated basis systems and the individual nodal basis systems with an additional transformation. The exact evaluation of the initial director vector along with the interpolation of the nodal rotations lead to a shell formulation which yields precise results even for coarse meshes. The convergence behavior is shown to be correct for k-refinement allowing the use of coarse meshes with high orders of NURBS basis functions. This is potentially advantageous for applications with high numerical effort per integration point. The geometrically nonlinear formulation accounts for large rotations. The consistent tangent matrix is derived. Various standard benchmark examples show the superior accuracy of the presented shell formulation. A new benchmark designed to test the convergence behavior for free form surfaces is presented. Despite the higher numerical effort per integration point the improved accuracy yields considerable savings in computation cost for a predefined error bound.

- The weak substitution method – An application of the mortar method for patch coupling in NURBS-based isogeometric analysis (2015)
- In this contribution a mortar-type method for the coupling of non-conforming NURBS surface patches is proposed. The connection of non-conforming patches with shared degrees of freedom requires mutual refinement, which propagates throughout the whole patch due to the tensor-product structure of NURBS surfaces. Thus, methods to handle non-conforming meshes are essential in NURBS-based isogeometric analysis. The main objective of this work is to provide a simple and efficient way to couple the individual patches of complex geometrical models without altering the variational formulation. The deformations of the interface control points of adjacent patches are interrelated with a master-slave relation. This relation is established numerically using the weak form of the equality of mutual deformations along the interface. With the help of this relation the interface degrees of freedom of the slave patch can be condensated out of the system. A natural connection of the patches is attained without additional terms in the weak form. The proposed method is also applicable for nonlinear computations without further measures. Linear and geometrical nonlinear examples show the high accuracy and robustness of the new method. A comparison to reference results and to computations with the Lagrange multiplier method is given.

- MACAO - A Journey into CAx Interoperability and Collaborative Design (2000)
- The increasing parallelisation of development processes as well as the ongoing trends towards virtual product development and outsourcing of development activities strengthen the need for 3D co-operative design via communication networks. Regarding the field of CAx, none of the existing systems meets all the requirements of very complex process chain. This leads to a tremendous need for the integration of heterogeneous CAx systems. Therefore, MACAO, a platform-independent client for a distributed CAx component system, the so-called ANICA CAx object bus, is presented. The MACAO client is able to access objects and functions provided by different CAx servers distributed over a communication network. Thus, MACAO is a new solution for engineering design and visualisation in shared distributed virtual environments. This paper describes the underlying concepts, the actual prototype implementation, as well as possible application scenarios in the area of co-operative design and visualisation.

- Features and Design Patterns - A Comparison (1999)
- Today, the worlds and terminologies of mechanical engineering and software engineering coexist, but they do not always work together seamlessly. Both worlds have developed their own separate formal vocabulary for expressing their concepts as well as for capturing and communicating their respective domain knowledge. But, these two vocabularies are not unified, interwoven, or at least interconnected in a reasonable manner. Thus, the subject of this paper is a comparison of the vocabularies of the two fields, namely feature technology from the area of mechanical engineering and software design patterns from the software engineering domain. Therefore, a certain amount of definitions, history, examples, etc. is presented for features as well as for design patterns. After this, an analysis is carried out to identify analogies and differences. The main intention of this paper is to inform both worlds - mechanical and software engineering - about the other side's terminology and to start a discussion about potential mutual benefits and possibilities to bridge the gap between these two worlds, e.g. to improve the manageability of CAx product development processes.

- Industrial CAD/CAM Application and System Architecture - a Closed Loop (1996)
- In the past years, development and production processes in many companies have changed in a revolutionary way, leading to new demands in information and CAx technology. The R&D-departments of the German automotive industry installed a working group to develop a common long term CAD/CAM strategy1. A preliminary result is the concept for an open CAx system architecture as a basis for realizing industrial requirements on CAD/ CAM and for the cooperation with system vendors. The project ANICA was started in cooperation with five international CAD/CAM -suppliers in order to show the feasibility of this architecture. The access interfaces of different system kernels are analysed with the aim of developing a concept for a cooperating CAx system network. The concept will be put into practice with a software prototype basing on CORBA and OLE. The communication elements within such an architecture have to go far beyond conventional CAD data. This will lead to an extension of "feature" concepts including CAx functionality and dynamic information about the process chain of a product. The impact on modern concepts for user interfaces, on reverse engineering methods and on product data models will be discussed to finally close the loop to industrial CAx application.

- Process Chain in Automotive Industry - Present Day Demands versus Long Term Open CAD/CAM Strategies (1997)
- The automotive industry was a pioneer in using CAD/CAM technology. Now the car manufacturers development process is almost completely done with this technology. Substantial initiative for the standardisation of CAD/CAM technics comes from the automotive industry, as e.g. for neutral CAD data interfaces. The R&D departments of German car manufacturers have founded a working group ii with the aim to develop a common long term CAD/CAM strategy. One important result is the concept of a future CAx iii architecture based on the standard data structure STEP iv . The commitment of the car manufactures to STEP and open system architectures is in contradiction to their attitude towards suppliers and subcontractors: Recently, more and more contractors are contractually bound to use exactly the same CAD system as the orderer. The German car industry tries to find a way out of this contradiction and to improve the co-operation between the companies in short term. Therefore they proposed a "Dual CAD Strategy", i.e. to put improvements in CAD communication into practice which are possible today - even proprietary solutions - and in parallel to invest in strategic concepts to prepare tomorrow's open system landscape.

- Best of Both Worlds - A Mapping from EXPRESS-G to UML (1998)
- On the one hand, in the world of Product Data Technology (PDT), the ISO standard STEP (STandard for the Exchange of Product model data) gains more and more importance. STEP includes the information model specification language EXPRESS and its graphical notation EXPRESS-G. On the other hand, in the Software Engineering world in general, mainly other modelling languages are in use - particularly the Unified Modeling Language (UML), recently adopted to become a standard by the Object Management Group, will probably achieve broad acceptance. Despite a strong interconnection of PDT with the Software Engineering area, there is a lack of bridging elements concerning the modelling language level. This paper introduces a mapping between EXPRESS-G and UML in order to define a linking bridge and bring the best of both worlds together. Hereby the feasibility of a mapping is shown with representative examples; several problematic cases are discussed as well as possible solutions presented.

- Data Management in distributed CAx Systems (1998)
- Interoperability between different CAx systems involved in the development process of cars is presently one of the most critical issues in the automotive industry. None of the existing CAx systems meets all requirements of the very complex process network of the lifecycle of a car. With this background, industrial engineers have to use various CAx systems to get an optimal support for their daily work. Today, the communication between different CAx systems is done via data files using special direct converters or neutral system independent standards like IGES, VDAFS, and recently STEP, the international standard for product data description. To reduce the dependency on individual CAx s ystem vendors, the German automotive industry developed an open CAx system architecture based on STEP as guiding principle for CAx system development. The central component of this architecture is a common, system-independent access interface to CAx functions and data of all involved CAx systems, which is under development in the project ANICA. Within this project, a CAx object bus has been developed based on a STEP data description using CORBA as an integration platform. This new approach allows a transparent access to data and functions of the integrated CAx systems without file-based data exchange. The product development process with various CAx systems concerns objects from different CAx systems. Thus, mechanisms are needed to handle the persistent storage of the CAx objects distributed over the CAx object bus to give the developing engineers a consistent view of the data model of their product. The following paper discusses several possibilities to guarantee consistent data management and storage of distributed CAx models. One of the most promising approaches is the enhancement of the CAx object bus by a STEP-based object-oriented data server to realise a central data management.