## Fachbereich Informatik

### Refine

#### Year of publication

- 1999 (178) (remove)

#### Document Type

- Preprint (178) (remove)

#### Language

- English (178) (remove)

#### Keywords

We present an approach to learning cooperative behavior of agents. Our ap-proach is based on classifying situations with the help of the nearest-neighborrule. In this context, learning amounts to evolving a set of good prototypical sit-uations. With each prototypical situation an action is associated that should beexecuted in that situation. A set of prototypical situation/action pairs togetherwith the nearest-neighbor rule represent the behavior of an agent.We demonstrate the utility of our approach in the light of variants of thewell-known pursuit game. To this end, we present a classification of variantsof the pursuit game, and we report on the results of our approach obtained forvariants regarding several aspects of the classification. A first implementationof our approach that utilizes a genetic algorithm to conduct the search for a setof suitable prototypical situation/action pairs was able to handle many differentvariants.

The common wisdom that goal orderings can be used to improve planning performance is nearly as old as planning itself. During the last decades of research several approaches emerged that computed goal orderings for different planning paradigms, mostly in the area of state-space planning. For partial-order, plan-space planners goal orderings have not been investigated in much detail. Mechanisms developed for statespace planning are not directly applicable because partial-order planners do not have a current (world) state. Further, it is not completely clear how plan-space planners should make use of goal orderings. This paper describes an approach to extract goal orderings to be used by the plan-space planner CAPlan. The extraction of goal orderings is based on the analysis of an extended version of operator graphs which previously have been found useful for the analysis of interactions and recursion of plan-space planners.

Freivalds, Karpinski and Smith [8] explored a special type of learning in the limit: identification of an unknown concept (function) by eliminating (erasing) all but one possible hypothesis (this type of learning is called co-learning). The motivation behind learning by erasing lies in the process of human and automated computer learning: often we can discard incorrect solutions much easier than to come up with the correct one. In Gödel numberings any learnable family can be learned by an erasing strategy. In this paper we concentrate on co-learning minimal programs. We show that co-learning of minimal programs, as originally defined is significantly weaker than learning minimal programs in Gödel numberings. In order to enhance the learning power

We present an approach to automating the selection of search-guiding heuris-tics that control the search conducted by a problem solver. The approach centerson representing problems with feature vectors that are vectors of numerical val-ues. Thus, similarity between problems can be determined by using a distancemeasure on feature vectors. Given a database of problems, each problem beingassociated with the heuristic that was used to solve it, heuristics to be employedto solve a novel problem are suggested in correspondence with the similaritybetween the novel problem and problems of the database.Our approach is strongly connected with instance-based learning and nearest-neighbor classification and therefore possesses incremental learning capabilities.In experimental studies it has proven to be a viable tool for achieving the finaland crucial missing piece of automation of problem solving - namely selecting anappropriate search-guiding heuristic - in a flexible way.This work was supported by the Deutsche Forschungsgemeinschaft (DFG).

This report presents the properties of a specification of the domain of process planning for rotary symmetrical workpieces. The specification results from a model for problem solving in this domain that involves different reasoners, one of which is an AI planner that achieves goals corresponding to machining workpieces by considering certain operational restrictions of the domain. When planning with SNLP (McAllester and Rosenblitt, 1991), we will show that the resulting plans have the property of minimizing the use of certain key operations. Further, we will show that, for elastic protected plans (Kambhampati et al., 1996) such as the ones produced by SNLP, the goals corresponding to machining parts of a workpiece are OE-constrained trivial serializable, a special form of trivial serializability (Barrett and Weld, 1994). However, we will show that planning with SNLP in this domain can be very difficult: elastic protected plans for machining parts of a workpiece are nonmergeable. Finally, we will show that, for sufix, prefix or sufix and prefix plans such as the ones produced by state-space planners, it is not possible to have both properties, being OEconstrained trivial serializable and minimizing the use of the key operations, at the same time.

The feature interaction problem in telecommunications systems increasingly obstructsthe evolution of such systems. We develop formal detection criteria which render anecessary (but less than sufficient) condition for feature interactions. It can be checkedmechanically and points out all potentially critical spots. These have to be analyzedmanually. The resulting resolution decisions are incorporated formally. Some prototypetool support is already available. A prerequisite for formal criteria is a formal definitionof the problem. Since the notions of feature and feature interaction are often used in arather fuzzy way, we attempt a formal definition first and discuss which aspects can beincluded in a formalization (and therefore in a detection method). This paper describeson-going work.

Collecting Experience on the Systematic Development of CBR Applications using the INRECA Methodology
(1999)

This paper presents an overview of the INRECA methodology for building and maintaining CBR applications. This methodology supports the collection and reuse of experience on the systematic development of CBR applications. It is based on the experience factory and the software process modeling approach from software engineering. CBR development experience is documented using software process models and stored in different levels of generality in a three-layered experience base. Up to now, experience from 9 industrial projects enacted by all INRECA II partners has been collected.

Automata-Theoretic vs. Property-Oriented Approaches for the Detection of Feature Interactions in IN
(1999)

The feature interaction problem in Intelligent Networks obstructs more and morethe rapid introduction of new features. Detecting such feature interactions turns out to be a big problem. The size of the systems and the sheer computational com-plexity prevents the system developer from checking manually any feature against any other feature. We give an overview on current (verification) approaches and categorize them into property-oriented and automata-theoretic approaches. A comparisonturns out that each approach complements the other in a certain sense. We proposeto apply both approaches together in order to solve the feature interaction problem.

A large set of criteria to evaluate formal methods for reactive systems is presented. To make this set more comprehensible, it is structured according to a Concept-Model of formal methods. It is made clear that it is necessary to make the catalogue more specific before applying it. Some of the steps needed to do so are explained. As an example the catalogue is applied within the context of the application domain building automation systems to three different formal methods: SDL, statecharts, and a temporallogic.

We present a mathematical knowledge base containing the factual know-ledge of the first of three parts of a textbook on semi-groups and automata,namely "P. Deussen: Halbgruppen und Automaten". Like almost all math-ematical textbooks this textbook is not self-contained, but there are somealgebraic and set-theoretical concepts not being explained. These concepts areadded to the knowledge base. Furthermore there is knowledge about the nat-ural numbers, which is formalized following the first paragraph of "E. Landau:Grundlagen der Analysis".The data base is written in a sorted higher-order logic, a variant of POST ,the working language of the proof development environment OmegaGamma mkrp. We dis-tinguish three different types of knowledge: axioms, definitions, and theorems.Up to now, there are only 2 axioms (natural numbers and cardinality), 149definitions (like that for a semi-group), and 165 theorems. The consistency ofsuch knowledge bases cannot be proved in general, but inconsistencies may beimported only by the axioms. Definitions and theorems should not lead to anyinconsistency since definitions form conservative extensions and theorems areproved to be consequences.

The paper shows that characterizing the causal relationship between significant events is an important but non-trivial aspect for understanding the behavior of distributed programs. An introduction to the notion of causality and its relation to logical time is given; some fundamental results concerning the characterization of causality are pre- sented. Recent work on the detection of causal relationships in distributed computations is surveyed. The relative merits and limitations of the different approaches are discussed, and their general feasibility is analyzed.

In order to improve the quality of software systems and to set up a more effective process for their development, many attempts have been made in the field of software engineering. Reuse of existing knowledge is seen as a promising way to solve the outstanding problems in this field. In previous work we have integrated the design pattern concept with the formal design language SDL, resulting in a certain kind of pattern formalization. For the domain of communication systems we have also developed a pool of SDL patterns with an accompanying process model for pattern application. In this paper we present an extension that combines the SDL pattern approach with the experience base concept. This extension supports a systematic method for empirical evaluation and continuous improvement of the SDL pattern approach. Thereby the experience base serves as a repository necessary for effective reuse of the captured knowledge. A comprehensive usage scenario is described which shows the advantages of the combined approach. To demonstrate its feasibility, first results of a research case study are given.

The purpose of this expose is to explain the generic design of a customized communication subsystem. The expose addresses both functional and non-functional aspects. Starting point is a real-time requirement from the application area building automation. We show how this application requirement and some background information about the application area lead to a system architecture, a communication service, a protocol architecture and to the selection, adaptation, and composition of protocol functionalities. The reader will probably be surprised how much effort is necessary in order to implement the innocuous, innocent, inconspicuous looking application requirement. Formal description techniques (FDTs) will be used in all design phases.

Today's communication systems are typically structured into several layers, where each layer realizes a fixed set of protocol functionalities. These functionalities have been carefully chosen such that a wide range of applications can be supported and protocols work in a general environment of networks. However, due to evolving network technologies as well as increased and varying demands of modern applications general-purpose protocol stacks are not always adequate. To improve this situation new flexible communication architectures have been developed which enable the configuration of customized communication subsystems by composing a proper set of reusable building blocks. In particular, several approaches to automatic configuration of communication subsystems have been reported in the literature. This report gives an overview of theses approaches (F-CCS, Da CaPo, x-Kernel, and ADAPTIVE) and, in particular, defines a framework, which identifies common architectural issues and configuration tasks.

A new approach for modelling time that does not rely on the concept of a clock is proposed. In order to establish a notion of time, system behaviour is represented as a joint progression of multiple threads of control, which satisfies a certain set of axioms. We show that the clock-independent time model is related to the well-known concept of a global clock and argue that both approaches establish the same notion of time.

Due to the large variety of modern applications and evolving network technologies, a small number of general-purpose protocol stacks will no longer be sufficient. Rather, customization of communication protocols will play a major role. In this paper, we present an approach that has the potential to substantially reduce the effort for designing customized protocols. Our approach is based on the concept of design patterns, which is well-established in object oriented software development. We specialize this concept to communication protocols, and - in addition - use formal description techniques (FDTs) to specify protocol design patterns as well as rules for their instantiation and composition. The FDTs of our choice are SDL-92 and MSCs, which offer suitable language support. We propose an SDL pattern description template and relate pattern-based configuring of communication protocols to existing SDL methodologies. Particular SDL patterns and the configuring of a customized resource reservation protocol are presented in detail.

A non-trivial real-time requirement obeying a pattern that can be foundin various instantiations in the application domain building automation, and which is therefore called generic, is investigated in detail. Starting point is a description of a real-time problem in natural language augmented by a diagram, in a style often found in requirements documents. Step by step, this description is made more precise and finally transformed into a surprisingly concise formal specification, written in real-time temporal logic with customized operators. Wereason why this formal specification precisely captures the original description- as far as this is feasible due to the lack of precision of natural language.

A Tailored Real Time Temporal Logic for Specifying Requirements of Building Automation Systems
(1999)

A tailored real time temporal logic for specifying requirements of building automation systems is introduced and analyzed. The logic features several new real time operators, which are chosen with regard to the application area. The new operators improve the conciseness and readability of requirements as compared to a general-purpose real time temporal logic. In addition, some of the operators also enhance the expressiveness of the logic. A number of properties of the new operators are presented and proven.

A generic approach to the formal specification of system requirements is presented. It is based on a pool of requirement patterns, which are related to design patterns well-known in object-oriented software development. The application of such patterns enhances the reusability and genericity as well as the intelligibility of the formal requirement specification. The approach is instantiated by a tailored real-time temporal logic and by selecting building automation systems as application domain. With respect to this domain, the pattern discovery and reuse tasks are explained and illustrated, and a set of typical requirement patterns is presented. Finally, the results of a case study where the approach has been applied are summarized.

We tested the GYROSTAR ENV-05S. This device is a sensor for angular velocity. There- fore the orientation must be calculated by integration of the angular velocity over time. The devices output is a voltage proportional to the angular velocity and relative to a reference. The test where done to find out under which conditions it is possible to use this device for estimation of orientation.

A map for an autonomous mobile robot (AMR) in an indoor environment for the purpose ofcontinuous position and orientation estimation is discussed. Unlike many other approaches, this map is not based on geometrical primitives like lines and polygons. An algorithm is shown , where the sensordata of a laser range finder can be used to establish this map without a geometrical interpretation of the data. This is done by converting single laser radar scans to statistical representations of the environ-ment, so that a crosscorrelation of an actu al converted scan and this representative results into the actual position and orientation in a global coordinate system. The map itsel f is build of representative scansfor the positions where the AMR has been, so that it is able to find its position and orientation by c omparing the actual scan with a scan stored in the map.

One of the problems of autonomous mobile systems is the continuous tracking of position and orientation. In most cases, this problem is solved by dead reckoning, based on measurement of wheel rotations or step counts and step width. Unfortunately dead reckoning leads to accumulation of drift errors and is very sensitive against slippery. In this paper an algorithm for tracking position and orientation is presented being nearly independent from odometry and its problems with slippery. To achieve this results, a rotating range-finder is used, delivering scans of the environmental structure. The properties of this structure are used to match the scans from different locations in order to find their translational and rotational displacement. For this purpose derivatives of range-finder scans are calculated which can be used to find position and orientation by crosscorrelation.

We argue in this paper that sophisticated mi-croplanning techniques are required even formathematical proofs, in contrast to the beliefthat mathematical texts are only schematicand mechanical. We demonstrate why para-phrasing and aggregation significantly en-hance the flexibility and the coherence ofthe text produced. To this end, we adoptedthe Text Structure of Meteer as our basicrepresentation. The type checking mecha-nism of Text Structure allows us to achieveparaphrasing by building comparable combi-nations of linguistic resources. Specified interms of concepts in an uniform ontologicalstructure called the Upper Model, our se-mantic aggregation rules are more compactthan similar rules reported in the literature.

This paper outlines an implemented system called PROVERB that explains machine -found natural deduction proofs in natural language. Different from earlier works, we pursue a reconstructive approach. Based on the observation that natural deduction proofs are at a too low level of abstraction compared with proofs found in mathematical textbooks, we define first the concept of so-called assertion level inference rules. Derivations justified by these rules can intuitively be understood as the application of a definition or a theorem. Then an algorithm is introduced that abstracts machine-found ND proofs using the assertion level inference rules. Abstracted proofs are then verbalized into natural language by a presentation module. The most significant feature of the presentation module is that it combines standard hierarchical text planning and techniques that locally organize argumentative texts based on the derivation relation under the guidance of a focus mechanism. The behavior of the system is demonstrated with the help of a concrete example throughout the paper.

We describe a technique to make application programs fault tolerant. This techADnique is based on the concept of checkpointing from an active program to one ormore passive backup copies which serve as an abstraction of stable memory. Ifthe primary copy fails, one of the backup copies takes over and resumes processADing service requests. After each failure a new backup copy is created in order torestore the replication degree of the service. All mechanisms necessary to achieveand maintain fault tolerance can be added automatically to the code of a nonADfaulttolerant server, thus making fault tolerance completely transparent for the applicaADtion programmer.

Even though it is not very often admitted, partial functionsdo play a significant role in many practical applications of deduction sys-tems. Kleene has already given a semantic account of partial functionsusing a three-valued logic decades ago. This approach allows rejectingcertain unwanted formulae as faulty, which the simpler two-valued onesaccept. We have developed resolution and tableau calculi for automatedtheorem proving that take the restrictions of the three-valued logic intoaccount, which however have the severe drawback that existing theo-rem provers cannot directly be adapted to the technique. Even recentlyimplemented calculi for many-valued logics are not well-suited, since inthose the quantification does not exclude the undefined element. In thiswork we show, that it is possible to enhance a two-valued theorem proverby a simple strategy so that it can be used to generate proofs for the the-orems of the three-valued setting. By this we are able to use an existingtheorem prover for a large fragment of the language.

This paper addresses two modi of analogical reasoning. Thefirst modus is based on the explicit representation of the justificationfor the analogical inference. The second modus is based on the repre-sentation of typical instances by concept structures. The two kinds ofanalogical inferences rely on different forms of relevance knowledge thatcause non-monotonicity. While the uncertainty and non-monotonicity ofanalogical inferences is not questioned, a semantic characterization ofanalogical reasoning has not been given yet. We introduce a minimalmodel semantics for analogical inference with typical instances.

Dynamic Lambda Calculus
(1999)

The goal of this paper is to lay a logical foundation for discourse theories by providing analgebraic foundation of compositional formalisms for discourse semantics as an analogon tothe simply typed (lambda)-calculus. Just as that can be specialized to type theory by simply providinga special type for truth values and postulating the quantifiers and connectives as constantswith fixed semantics, the proposed dynamic (lambda)-calculus DLC can be specialized to (lambda)-DRT byessentially the same measures, yielding a much more principled and modular treatment of(lambda)-DRT than before; DLC is also expected to eventually provide a conceptually simple basisfor studying higher-order unification for compositional discourse theories.Over the past few years, there have been a series of attempts [Zee89, GS90, EK95, Mus96,KKP96, Kus96] to combine the Montagovian type theoretic framework [Mon74] with dynamicapproaches, such as DRT [Kam81]. The motivation for these developments is to obtain a generallogical framework for discourse semantics that combines compositionality and dynamic binding.Let us look at an example of compositional semantics construction in (lambda)-DRT which is one ofthe above formalisms [KKP96, Kus96]. By the use of fi-reduction we arrive at a first-order DRTrepresentation of the sentence A i man sleeps. (i denoting an index for anaphoric binding.)

This paper shows how a new approach to theorem provingby analogy is applicable to real maths problems. This approach worksat the level of proof-plans and employs reformulation that goes beyondsymbol mapping. The Heine-Borel theorem is a widely known result inmathematics. It is usually stated in R 1 and similar versions are also truein R 2 , in topology, and metric spaces. Its analogical transfer was proposedas a challenge example and could not be solved by previous approachesto theorem proving by analogy. We use a proof-plan of the Heine-Boreltheorem in R 1 as a guide in automatically producing a proof-plan of theHeine-Borel theorem in R 2 by analogy-driven proof-plan construction.

This paper addresses a model of analogy-driven theorem proving that is more general and cognitively more adequate than previous approaches. The model works at the level ofproof-plans. More precisely, we consider analogy as a control strategy in proof planning that employs a source proof-plan to guide the construction of a proof-plan for the target problem. Our approach includes a reformulation of the source proof-plan. This is in accordance with the well known fact that constructing ananalogy in maths often amounts to first finding the appropriate representation which brings out the similarity of two problems, i.e., finding the right concepts and the right level of abstraction. Several well known theorems were processed by our analogy-driven proof-plan construction that could not be proven analogically by previous approaches.

This paper addresses analogy-driven auto-mated theorem proving that employs a sourceproof-plan to guide the search for a proof-planof the target problem. The approach presen-ted uses reformulations that go beyond symbolmappings and that incorporate frequently usedre-representations and abstractions. Severalrealistic math examples were successfully pro-cessed by our analogy-driven proof-plan con-struction. One challenge example, a Heine-Borel theorem, is discussed here. For this ex-ample the reformulaitons are shown step bystep and the modifying actions are demon-strated.

Analogy in CLAM
(1999)

CL A M is a proof planner, developed by the Dream group in Edinburgh,that mainly operates for inductive proofs. This paper addresses the questionhow an analogy model that I developed independently of CL A M can beapplied to CL A M and it presents analogy-driven proof plan construction as acontrol strategy of CL A M . This strategy is realized as a derivational analogythat includes the reformulation of proof plans. The analogical replay checkswhether the reformulated justifications of the source plan methods hold inthe target as a permission to transfer the method to the target plan. SinceCL A M has very efficient heuristic search strategies, the main purpose ofthe analogy is to suggest lemmas, to replay not commonly loaded methods,to suggest induction variables and induction terms, and to override controlrather than to construct a target proof plan that can be built by CL A Mitself more efficiently.

Distributed systems are an alternative to shared-memorymultiprocessors for the execution of parallel applications.PANDA is a runtime system which provides architecturalsupport for efficient parallel and distributed program-ming. PANDA supplies means for fast user-level threads,and for a transparent and coordinated sharing of objectsacross a homogeneous network. The paper motivates themajor architectural choices that guided our design. Theproblem of sharing data in a distributed environment isdiscussed, and the performance of appropriate mecha-nisms provided by the PANDA prototype implementation isassessed.

The paper explores the role of artificial intelligence techniques in the development of an enhanced software project management tool, which takes account of the emerging requirement for support systems to address the increasing trend towards distributed multi-platform software development projects. In addressing these aims this research devised a novel architecture and framework for use as the basis of an intelligent assistance system for use by software project managers, in the planning and managing of a software project. This paper also describes the construction of a prototype system to implement this architecture and the results of a series of user trials on this prototype system.

In this paper, we present an approach to support distributed planning and scheduling, as well as the subsequent (also distributed) plan execution, in one system. The system will support the distributed planners and schedulers by providing task agendas for them, stating who needs to plan which tasks, and sending change notifications and warnings, if a planning or scheduling decision needs to be updated. The plan built using these mechanisms is then enacted by a workflow engine in the same system. This approach enables us to support interleaved planning and plan enactment, allowing the user to change the plan and schedule while the project is already under way. Deviations of the actual project enactment from the plan and schedule can automatically be detected, and necessary notifications will be sent to the concerned planner(s). This again facilitates the task of keeping the plan up to date, avoiding the complete invalidation of the plan as is often the case in conventional projects soon after enactment has started.

Emerging technologies such as the Internet, the World Wide Web, JavaTM technology, and software components, are changing the software business. Activities that have in the past been constrained by the need for intense information management increasingly involve cooperating organizations. Information management tools and techniques do not scale well in the face of this organizational complexity. An informal approach to information sharing, based largely on manual copying of information, cannot meet the demands of the task as size and complexity increase. Formal approaches to sharing information are based on groupware tools, but cooperating organizations do not always enjoy the trust or commonality of sophisticated infrastructure, methods, and skills that this approach requires. Bridging the gap requires a simple, loosely coupled, highly flexible strategy for information sharing. Extensive information relevant to different parts of the software life cycle should be interconnected in a simple, easily described way; such connections should permit selective information sharing by a variety of tools and in a variety of collaboration modes that vary in the amount of organizational coupling they require.

This paper outlines the microplanner of PROVERB , a system that generates multilingual text from machine-found mathematical proofs. The main representational vehicle is the text structure proposed by Meteer. Following Panaget, we also distinguish between the ideational and the textual semantic categories, and use the upper model to replace the former. Based on this, a further extension is made to support aggregation before realization decisions are made. While our the framework of our macroplanner is kept languageindependent, our microplanner draws on language specific linguistic sources such as realization classes and lexicon. Since English and German are the first two languages to be generated and because the sublanguage of our mathematical domain is relatively limited, the upper model and the textual semantic categories are designed to cope with both languages. Since the work reported is still in progress, we also discuss open problems we are facing.

This paper describes the linguistic part of a system called PROVERB, which transforms, abstracts,and verbalizes machine-found proofs into formatedtexts. Linguistically, the architecture of PROVERB follows most application oriented systems, and is a pipelined control of three components. Its macroplanner linearizes a proof and plans mediating communicative acts by employing a combination of hierarchical planning and focus-guided navigation. The microplanner then maps communicative acts and domain concepts into linguistic resources, paraphrases and aggregates such resources to producethe final Text Structure. A Text Structure contains all necessary syntactic information, and can be executed by our realizer into grammatical sentences. The system works fully automatically and performs particularly well for textbook size examples.

This paper outlines the linguistic part of an implemented system namedPROVERB[3] that transforms, abstracts, and verbalizes machine-found proofs innatural language. It aims to illustrate, that state-of-the-art techniques of natural language processing are necessary to produce coherent texts that resemble those found in typical mathematical textbooks, in contrast to the belief that mathematical texts are only schematic and mechanical.The verbalization module consists of a content planner, a sentence planner, and a syntactic generator. Intuitively speaking, the content planner first decides the order in which proof steps should be conveyed. It also some messages to highlight global proof structures. Subsequently, thesentence planner combines and rearranges linguistic resources associated with messages produced by the content planner in order to produce connected text. The syntactic generat or finally produces the surface text.

This paper describes a declarative approach forencoding the plan operators in proof planning,the so-called methods. The notion of methodevolves from the much studied concept of a tac-tic and was first used by A. Bundy. Signific-ant deductive power has been achieved withthe planning approach towards automated de-duction; however, the procedural character ofthe tactic part of methods hinders mechanicalmodification. Although the strength of a proofplanning system largely depends on powerfulgeneral procedures which solve a large class ofproblems, mechanical or even automated modi-fication of methods is necessary, since methodsdesigned for a specific type of problems willnever be general enough. After introducing thegeneral framework, we exemplify the mechan-ical modification of methods via a particularmeta-method which modifies methods by trans-forming connectives to quantifiers.

AbstractOne main purpose for the use of formal description techniques (FDTs) is formal reasoningand verification. This requires a formal calculus and a suitable formal semantics of theFDT. In this paper, we discuss the basic verification requirements for Estelle, and howthey can be supported by existing calculi. This leads us to the redefinition of the stanADdard Estelle semantics using Lamport's temporal logic of actions and Dijkstra's predicatetransformers.

The increasing use of distributed computer systems leads to an increasingneed for distributed applications. Their development in various domains like of-fice automation or computer integrated manufacturing is not sufficiently sup-ported by current techniques. New software engineering concepts are needed inthe three areas 'languages', 'tools', and 'environments'. We believe that object-oriented techniques and graphics support are key approaches to major achieve-ments in all three areas. As a consequence, we developed a universal object-oriented graphical editor ODE as one of our basic tools (tool building tool).ODE is based on the object-oriented paradigm, with some important extensionslike built-in object relations. It has an extensible functional language which al-lows for customization of the editor. ODE was developed as part of DOCASE, asoftware production environment for distributed applications. The basic ideas ofDOCASE will be presented and the requirements for ODE will be pointed out.Then ODE will be described in detail, followed by a sample customization ofODE: the one for the DOCASE design language.