## Fachbereich Informatik

### Refine

#### Year of publication

- 1999 (4) (remove)

#### Document Type

- Report (4) (remove)

#### Language

- English (4) (remove)

A fundamental variance reduction technique for Monte Carlo integration in the framework of integro-approximation problems is
presented. Using the method of dependent tests a successive hierarchical function approximation algorithm is developed, which
captures discontinuities and exploits smoothness in the target function. The general mathematical scheme and its highly efficient
implementation are illustrated for image generation by ray tracing,
yielding new and much faster image synthesis algorithms.

Approximation properties of the underlying estimator are used to improve the efficiency of the method of dependent tests. A multilevel approximation procedure is developed such that in each level the number of samples is balanced with the level-dependent variance, resulting in a considerable reduction of the overall computational cost. The new technique is applied to the Monte Carlo estimation of integrals depending on a parameter.

We study the global solution of Fredholm integral equations of the second kind by the help of Monte Carlo methods. Global solution means that we seek to approximate the full solution function. This is opposed to the usual applications of Monte Carlo, were one only wants to approximate a functional of the solution. In recent years several researchers developed Monte Carlo methods also for the global problem. In this paper we present a new Monte Carlo algorithm for the global solution of integral equations. We use multiwavelet expansions to approximate the solution. We study the behaviour of variance on increasing levels, and based on this, develop a new variance reduction technique. For classes of smooth kernels and right hand sides we determine the convergence rate of this algorithm and show that it is higher
than those of previously developed algorithms for the global problem. Moreover, an information-based complexity analysis shows that our algorithm is optimal among all stochastic algorithms of the same computational
cost and that no deterministic algorithm of the same cost can reach its convergence rate.