## Fachbereich Informatik

### Refine

#### Year of publication

- 1995 (3) (remove)

In this paper, the complexity of full solution of Fredholm integral equations of the second kind with data from the Sobolev class \(W^r_2\) is studied. The exact order of information complexity is derived. The lower bound is proved using a Gelfand number technique. The upper bound is shown by providing a concrete algorithm of optimal order, based on a specific hyperbolic cross approximation of the kernel function. Numerical experiments are included, comparing the optimal algorithm with the standard Galerkin method.

The local solution problem of multivariate Fredholm integral equations is studied. Recent research proved that for several function classes the complexity of this problem is closely related to the Gelfand numbers of some characterizing operators. The generalization of this approach to the situation of arbitrary Banach spaces is the subject of the present paper.
Furthermore, an iterative algorithm is described which - under some additional conditions - realizes the optimal error rate. The way these general theorems work is demonstrated by applying them to integral equations in a Sobolev space of periodic functions with dominating mixed derivative of various order.