## Fachbereich Informatik

### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (346)
- Bericht (139)
- Dissertation (124)
- Wissenschaftlicher Artikel (109)
- Masterarbeit (45)
- Studienarbeit (13)
- Konferenzveröffentlichung (6)
- Bachelorarbeit (2)
- Habilitation (2)
- Teil eines Buches (Kapitel) (1)

#### Schlagworte

- AG-RESY (64)
- PARO (26)
- Visualisierung (13)
- Case-Based Reasoning (12)
- CoMo-Kit (12)
- SKALP (12)
- META-AKAD (9)
- Case-Based Reasoning (8)
- HANDFLEX (8)
- Robotik (8)

- Wireless Signal Based Crowd Condition Estimation (2018)
- Crowd condition monitoring concerns the crowd safety and concerns business performance metrics. The research problem to be solved is a crowd condition estimation approach to enable and support the supervision of mass events by first-responders and marketing experts, but is also targeted towards supporting social scientists, journalists, historians, public relations experts, community leaders, and political researchers. Real-time insights of the crowd condition is desired for quick reactions and historic crowd conditions measurements are desired for profound post-event crowd condition analysis. This thesis aims to provide a systematic understanding of different approaches for crowd condition estimation by relying on 2.4 GHz signals and its variation in crowds of people, proposes and categorizes possible sensing approaches, applies supervised machine learning algorithms, and demonstrates experimental evaluation results. I categorize four sensing approaches. Firstly, stationary sensors which are sensing crowd centric signals sources. Secondly, stationary sensors which are sensing other stationary signals sources (either opportunistic or special purpose signal sources). Thirdly, a few volunteers within the crowd equipped with sensors which are sensing other surrounding crowd centric device signals (either individually, in a single group or collaboratively) within a small region. Fourthly, a small subset of participants within the crowd equipped with sensors and roaming throughout a whole city to sense wireless crowd centric signals. I present and evaluate an approach with meshed stationary sensors which were sensing crowd centric devices. This was demonstrated and empirically evaluated within an industrial project during three of the world-wide largest automotive exhibitions. With over 30 meshed stationary sensors in an optimized setup across 6400m2 I achieved a mean absolute error of the crowd density of just 0.0115 people per square meter which equals to an average of below 6% mean relative error from the ground truth. I validate the contextual crowd condition anomaly detection method during the visit of chancellor Mrs. Merkel and during a large press conference during the exhibition. I present the approach of opportunistically sensing stationary based wireless signal variations and validate this during the Hannover CeBIT exhibition with 80 opportunistic sources with a crowd condition estimation relative error of below 12% relying only on surrounding signals in influenced by humans. Pursuing this approach I present an approach with dedicated signal sources and sensors to estimate the condition of shared office environments. I demonstrate methods being viable to even detect low density static crowds, such as people sitting at their desks, and evaluate this on an eight person office scenario. I present the approach of mobile crowd density estimation by a group of sensors detecting other crowd centric devices in the proximity with a classification accuracy of the crowd density of 66 % (improvement of over 22% over a individual sensor) during the crowded Oktoberfest event. I propose a collaborative mobile sensing approach which makes the system more robust against variations that may result from the background of the people rather than the crowd condition with differential features taking information about the link structure between actively scanning devices, the ratio between values observed by different devices, ratio of discovered crowd devices over time, team-wise diversity of discovered devices, number of semi- continuous device visibility periods, and device visibility durations into account. I validate the approach on multiple experiments including the Kaiserslautern European soccer championship public viewing event and evaluated the collaborative mobile sensing approach with a crowd condition estimation accuracy of 77 % while outperforming previous methods by 21%. I present the feasibility of deploying the wireless crowd condition sensing approach to a citywide scale during an event in Zurich with 971 actively sensing participants and outperformed the reference method by 24% in average.

- Induction-based Verification of Synchronous and Hybrid Programs (2018)
- Embedded reactive systems underpin various safety-critical applications wherein they interact with other systems and the environment with limited or even no human supervision. Therefore, design errors that violate essential system specifications can lead to severe unacceptable damages. For this reason, formal verification of such systems in their physical environment is of high interest. Synchronous programs are typically used to represent embedded reactive systems while hybrid systems serve to model discrete reactive system in a continuous environment. As such, both synchronous programs and hybrid systems play important roles in the model-based design of embedded reactive systems. This thesis develops induction-based techniques for safety property verification of synchronous and hybrid programs. The imperative synchronous language Quartz and its hybrid systems’ extensions are used to sustain the findings. Deductive techniques for software verification typically use Hoare calculus. In this context, Verification Condition Generation (VCG) is used to apply Hoare calculus rules to a program whose statements are annotated with pre- and postconditions so that the validity of an obtained Verification Condition (VC) implies correctness of a given proof goal. Due to the abstraction of macro steps, Hoare calculus cannot directly generate VCs of synchronous programs unless it handles additional label variables or goto statements. As a first contribution, Floyd’s induction-based approach is employed to generate VCs for synchronous and hybrid programs. Five VCG methods are introduced that use inductive assertions to decompose the overall proof goal. Given the right assertions, the procedure can automatically generate a set of VCs that can then be checked by SMT solvers or automated theorem provers. The methods are proved sound and relatively complete, provided that the underlying assertion language is expressive enough. They can be applied to any program with a state-based semantics. Property Directed Reachability (PDR) is an efficient method for synchronous hardware circuit verification based on induction rather than fixpoint computation. Crucial steps of the PDR method consist of deciding about the reachability of Counterexamples to Induction (CTIs) and generalizing them to clauses that cover as many unreachable states as possible. The thesis demonstrates that PDR becomes more efficient for imperative synchronous programs when using the distinction between the control- and dataflow. Before calling the PDR method, it is possible to derive additional program control-flow information that can be added to the transition relation such that less CTIs will be generated. Two methods to compute additional control-flow information are presented that differ in how precisely they approximate the reachable control-flow states and, consequently, in their required runtime. After calling the PDR method, the CTI identification work is reduced to its control-flow part and to checking whether the obtained control-flow states are unreachable in the corresponding extended finite state machine of the program. If so, all states of the transition system that refer to the same program locations can be excluded, which significantly increases the performance of PDR.

- Delivering Supercomputing to the Ultrascale (2017)
- Computational simulations run on large supercomputers balance their outputs with the need of the scientist and the capability of the machine. Persistent storage is typically expensive and slow, its peformance grows at a slower rate than the processing power of the machine. This forces scientists to be practical about the size and frequency of the simulation outputs that can be later analyzed to understand the simulation states. Flexibility in the trade-offs of flexibilty and accessibility of the outputs of the simulations are critical the success of scientists using the supercomputers to understand their science. In situ transformations of the simulation state to be persistently stored is the focus of this dissertation. The extreme size and parallelism of simulations can cause challenges for visualization and data analysis. This is coupled with the need to accept pre partitioned data into the analysis algorithms, which is not always well oriented toward existing software infrastructures. The work in this dissertation is focused on improving current work flows and software to accept data as it is, and efficiently produce smaller, more information rich data, for persistent storage that is easily consumed by end-user scientists. I attack this problem from both a theoretical and practical basis, by managing completely raw data to quantities of information dense visualizations and study methods for managing both the creation and persistence of data products from large scale simulations.

- Architectures and Methods for Large Scale Participatory Sensing and Data Modeling in Smart City Environments (2017)
- The proliferation of sensors in everyday devices – especially in smartphones – has led to crowd sensing becoming an important technique in many urban applications ranging from noise pollution mapping or road condition monitoring to tracking the spreading of diseases. However, in order to establish integrated crowd sensing environments on a large scale, some open issues need to be tackled first. On a high level, this thesis concentrates on dealing with two of those key issues: (1) efficiently collecting and processing large amounts of sensor data from smartphones in a scalable manner and (2) extracting abstract data models from those collected data sets thereby enabling the development of complex smart city services based on the extracted knowledge. Going more into detail, the first main contribution of this thesis is the development of methods and architectures to facilitate simple and efficient deployments, scalability and adaptability of crowd sensing applications in a broad range of scenarios while at the same time enabling the integration of incentivation mechanisms for the participating general public. During an evaluation within a complex, large-scale environment it is shown that real-world deployments of the proposed data recording architecture are in fact feasible. The second major contribution of this thesis is the development of a novel methodology for using the recorded data to extract abstract data models which are representing the inherent core characteristics of the source data correctly. Finally – and in order to bring together the results of the thesis – it is demonstrated how the proposed architecture and the modeling method can be used to implement a complex smart city service by employing a data driven development approach.

- Quantum Integration in Sobolev Classes (2002)
- We study high dimensional integration in the quantum model of computation. We develop quantum algorithms for integration of functions from Sobolev classes \(W^r_p [0,1]^d\) and analyze their convergence rates. We also prove lower bounds which show that the proposed algorithms are, in many cases, optimal within the setting of quantum computing. This extends recent results of Novak on integration of functions from Hölder classes.

- Information Complexity of Multivariate Fredholm Equations in Sobolev Classes (1995)
- In this paper, the complexity of full solution of Fredholm integral equations of the second kind with data from the Sobolev class \(W^r_2\) is studied. The exact order of information complexity is derived. The lower bound is proved using a Gelfand number technique. The upper bound is shown by providing a concrete algorithm of optimal order, based on a specific hyperbolic cross approximation of the kernel function. Numerical experiments are included, comparing the optimal algorithm with the standard Galerkin method.

- A Model for Structuring and Reusing Security Requirements Sources (2017)
- The research focus of this PhD thesis is on the various types of existing Security Requirements Sources (SRSs), particularly on their categorization and structuring. A model is proposed in order to address the current challenges in the state of the art and the state of the practice.

- Optimal Summation and Integration by Deterministic, Randomized, and Quantum Algorithms (2001)
- We survey old and new results about optimal algorithms for summation of finite sequences and for integration of functions from Hölder or Sobolev spaces. First we discuss optimal deterministic and randornized algorithms. Then we add a new aspect, which has not been covered before on conferences about (quasi-) Monte Carlo methods: quantum computation. We give a short introduction into this setting and present recent results of the authors on optimal quantum algorithms for summation and integration. We discuss comparisons between the three settings. The most interesting case for Monte Carlo and quantum integration is that of moderate smoothness \(k\) and large dimension \(d\) which, in fact, occurs in a number of important applied problems. In that case the deterministic exponent is negligible, so the \(n^{-1/2}\) Monte Carlo and the \(n^{-1}\) quantum speedup essentially constitute the entire convergence rate.

- On a Problem in Quantum Summation (2001)
- We consider the computation of the mean of sequences in the quantum model of computation. We determine the query complexity in the case of sequences which satisfy a \(p\)-summability condition for \(1\le p<2\). This settles a problem left open in Heinrich (2001).

- Free Form Volumes (1994)
- Free form volumes in rational Bézier representation are defined via homogeneous coordinates and two applications are pointed out : generation of solid primitives and curve and surface modelling by the way of volume deformation. Visualization techniques are reviewed, too.