## Fachbereich Informatik

We present an approach to learning cooperative behavior of agents. Our ap-proach is based on classifying situations with the help of the nearest-neighborrule. In this context, learning amounts to evolving a set of good prototypical sit-uations. With each prototypical situation an action is associated that should beexecuted in that situation. A set of prototypical situation/action pairs togetherwith the nearest-neighbor rule represent the behavior of an agent.We demonstrate the utility of our approach in the light of variants of thewell-known pursuit game. To this end, we present a classification of variantsof the pursuit game, and we report on the results of our approach obtained forvariants regarding several aspects of the classification. A first implementationof our approach that utilizes a genetic algorithm to conduct the search for a setof suitable prototypical situation/action pairs was able to handle many differentvariants.

The team work method is a concept for distributing automated theoremprovers and so to activate several experts to work on a given problem. We haveimplemented this for pure equational logic using the unfailing KnuthADBendixcompletion procedure as basic prover. In this paper we present three classes ofexperts working in a goal oriented fashion. In general, goal oriented experts perADform their job "unfair" and so are often unable to solve a given problem alone.However, as a team member in the team work method they perform highly effiADcient, even in comparison with such respected provers as Otter 3.0 or REVEAL,as we demonstrate by examples, some of which can only be proved using teamwork.The reason for these achievements results from the fact that the team workmethod forces the experts to compete for a while and then to cooperate by exADchanging their best results. This allows one to collect "good" intermediate resultsand to forget "useless" ones. Completion based proof methods are frequently reADgarded to have the disadvantage of being not goal oriented. We believe that ourapproach overcomes this disadvantage to a large extend.

We present an overview of various learning techniques used in automated theorem provers. We characterize the main problems arising in this context and classify the solutions to these problems from published approaches. We analyze the suitability of several combinations of solutions for different approaches to theorem proving and place these combinations in a spectrum ranging from provers using very specialized learning approaches to optimally adapt to a small class of proof problems, to provers that learn more general kinds of knowledge, resulting in systems that are less efficient in special cases but show improved performance for a wide range of problems. Finally, we suggest combinations of solutions for various proof philosophies.

We present an approach to automating the selection of search-guiding heuris-tics that control the search conducted by a problem solver. The approach centerson representing problems with feature vectors that are vectors of numerical val-ues. Thus, similarity between problems can be determined by using a distancemeasure on feature vectors. Given a database of problems, each problem beingassociated with the heuristic that was used to solve it, heuristics to be employedto solve a novel problem are suggested in correspondence with the similaritybetween the novel problem and problems of the database.Our approach is strongly connected with instance-based learning and nearest-neighbor classification and therefore possesses incremental learning capabilities.In experimental studies it has proven to be a viable tool for achieving the finaland crucial missing piece of automation of problem solving - namely selecting anappropriate search-guiding heuristic - in a flexible way.This work was supported by the Deutsche Forschungsgemeinschaft (DFG).

We are going to present two methods that allow to exploit previous expe-rience in the area of automated deduction. The first method adapts (learns)the parameters of a heuristic employed for controlling the application of infer-ence rules in order to find a known proof with as little redundant search effortas possible. Adaptation is accomplished by a genetic algorithm. A heuristiclearned that way can then be profitably used to solve similar problems. Thesecond method attempts to re-enact a known proof in a flexible manner in orderto solve an unknown problem whose proof is believed to lie in (close) vicinity.The experimental results obtained with an equational theorem prover show thatthese methods not only allow for impressive speed-ups, but also make it possibleto handle problems that were out of reach before.

In this report we present a case study of employing goal-oriented heuristics whenproving equational theorems with the (unfailing) Knut-Bendix completion proce-dure. The theorems are taken from the domain of lattice ordered groups. It will bedemonstrated that goal-oriented (heuristic) criteria for selecting the next critical paircan in many cases significantly reduce the search effort and hence increase per-formance of the proving system considerably. The heuristic, goalADoriented criteriaare on the one hand based on so-called "measures" measuring occurrences andnesting of function symbols, and on the other hand based on matching subterms.We also deal with the property of goal-oriented heuristics to be particularly helpfulin certain stages of a proof. This fact can be addressed by using them in a frame-work for distributed (equational) theorem proving, namely the "teamwork-method".