## Fachbereich Informatik

### Refine

#### Year of publication

- 1999 (228)
- 1994 (33)
- 1996 (32)
- 1998 (32)
- 1995 (31)
- 1997 (26)
- 2016 (23)
- 2015 (22)
- 2019 (22)
- 2001 (20)
- 2007 (18)
- 2018 (18)
- 2013 (17)
- 2014 (15)
- 1993 (14)
- 2009 (11)
- 2012 (11)
- 2000 (10)
- 2002 (10)
- 2003 (7)
- 2004 (7)
- 2006 (7)
- 2008 (7)
- 2017 (7)
- 2010 (6)
- 2005 (5)
- 1991 (4)
- 1992 (4)
- 2011 (4)
- 1979 (2)
- 1980 (1)
- 1990 (1)
- 2020 (1)

#### Document Type

- Preprint (290)
- Doctoral Thesis (141)
- Report (111)
- Article (90)
- Conference Proceeding (8)
- Master's Thesis (7)
- Study Thesis (5)
- Bachelor Thesis (2)
- Habilitation (2)

#### Language

- English (656) (remove)

#### Keywords

- AG-RESY (47)
- PARO (25)
- SKALP (15)
- Visualisierung (13)
- Case-Based Reasoning (11)
- RODEO (11)
- HANDFLEX (9)
- Abstraction (6)
- Case Based Reasoning (6)
- Robotics (6)

Partitioned chain grammars
(1979)

This paper introduces a new class of grammars, the partitioned chain grammars, for which efficient parsers can be automatically generated. Besides being efficiently parsable these grammars possess a number of other properties, which make them very attractive for the use in parser-generators. They for instance form a large grammarclass and describe all deterministic context-free languages. Main advantage of the partitioned chain grammars however is, that given a language it is usually easier to describe it by a partitioned chain grammar than to construct a grammar of some other type commonly used in parser-generators for it.

This article describes the basic concepts of an extensible customizable knowledge-basedgraphical editor and its adoption to the DOCASE methodology and tool environment. Oneaspect in this field is the mapping of conceptual models (expressed in a specific language)to their graphical representations. This also has impacts to the semantic of the user actionsin a graphical editor tool. The ability to extend and customize the editor can be used tobuild specific graphical interfaces to various kinds of tools in the software developmentprocess. Major aspects of ODE are semantics-directed editing besides normal syntax-directed editing, support of abstraction mechanisms, multiple modeless views to attack com-plexity, semantic analization and animation. The result is an highly customizable graphicaleditor construction set that matches requirements of applications in many domains of systemdesign.

Retrieval of cases is one important step within the case-based reasoning paradigm. We propose an improvement of this stage in the process model for finding most similar cases with an average effort of O[log2n], n number of cases. The basic idea of the algorithm is to use the heterogeneity of the search space for a density-based structuring and to employ this precomputed structure, a k-d tree, for efficient case retrieval according to a given similarity measure sim. In addition to illustrating the basic idea, we present the expe- rimental results of a comparison of four different k-d tree generating strategies as well as introduce the notion of virtual bounds as a new one that significantly reduces the retrieval effort from a more pragmatic perspective. The presented approach is fully implemented within the (Patdex) system, a case-based reasoning system for diagnostic applications in engineering domains.

Based on the experiences from an autonomous mobile robot project called MOBOT-III, we found hard realtime-constraints for the operating- system-design. ALBATROSS is "A flexible multi-tasking and realtime network-operating-system-kernel". The focusin this article is on a communication-scheme fulfilling the previous demanded assurances. The centralchapters discuss the shared buffer management and the way to design the communication architecture.Some further aspects beside the strict realtime-requirements like the possibilities to control and watch a running system, are mentioned. ALBATROSS is actually implemented on a multi-processor VMEbus-system.

Trimming of surfaces and volumes, curve and surface modeling via Bézier's idea of destortion, segmentation, reparametrization, geometric continuity are examples of applications of functional composition. This paper shows how to
compose polynomial and rational tensor product Bézier representations. The problem of composing Bezier splines and B-spline representations will also be addressed in this paper.

The use of non-volatile semiconductor memory within an extended storage hierarchy promises significant performance improvements for transaction processing. Although page-addressable semiconductor memories like extended memory, solid-state disks and disk caches are commercially available since several years, no detailed investigation of their use for transaction processing has been performed so far. We present a comprehensive simulation study that compares the performance of these storage types and of different usage forms. The following usage forms are considered: allocation of entire log and database files in non-volatile semiconductor memory, using a so-called write buffer to perform disk writes asynchronously, and caching of database pages at intermediate storage levels (in addition to main memory caching). Our simulations are conducted with both synthetically generated workloads and traces from real-life database applications. In particular, simulation results will be presented for the debit-credit workload frequently used in transaction processing benchmarks. As expected, the greatest performance improvements (but at the highest cost) can be achieved by storing log and database files completely in non-volatile semiconductor memory. For update-intensive
workloads, a limited amount of non-volatile memory used as a write buffer also proved to be very effective. To reduce the number of disk reads; caching of database pages in addition to main memory is best supported by an extended memory buffer. In this respect, disk caches are found to be less effective as they are designed for one-level caching. Different storage costs suggest that it may be cost-effective to use two or even three of the intermediate storage types together. The performance improvements obtainable by the use of non-volatile semiconductor memory is also found to reduce the need for sophisticated DBMS buffer management in order to achieve high transaction processing performance.

For the online collision detection with a multi-arm robot a fast method for computing the so-called collision vector is presented. Manipulators and obstacles are modelled by sets of convex polytopes. Known distance algorithms serve as a foundation. To speed up the collision detection dynamic obstacles are approximated by geometric primitives and organized in hierarchies. On-line, the here introduced Dynamic Hierarchies are adjusted to the current arm configuration. A comparison with previous methods shows an increased acceleration of the computations.

User interfaces for large distributed applications have to handle specific problems: the complexity of the application itself and the integration of online-data into the user interface. A main task of the user interface architecture is to provide powerful tools to design and augment the end-user system easily, hence giving the designer more time to focus on user requirements. Our experiences developing a user interface system for a process control room showed that a lot of time during the development process is wasted for the integration of online-data residing anywhere but not in the user interface itself. Furtheron external data may be kept by different kinds of programs, e.g. C-programs running
a numerical process model or PROLOG-programs running a diagnosis system, both in parallel to the process and in parallel to the user interface. Facing these specific requirements, we developed a user interface architecture following two main goals: 1. integration of external information into high-level graphical objects and 2. the system should be open for any program running as a separate process using its own problem-oriented language. The architecture is based on two approaches: an asynchronous, distributed and language independent communication model and an object model describing the problem domain and the interface using object-oriented techniques. Other areas like rule-based programming are involved, too. With this paper, we will present the XAVIA user interface architecture, the (as far as we know) first user inteface architecture, which is consequently based on a distributed object model.

Gauss Frame Offsets
(1992)

Virtual Reality (VR) is to be seen as the superset of simulation and animation. Visualization is done by rendering. The fundamental model of VR accounts for all phenomenons to be modelled with help of a computer. Examples range from simple dragging actions with a mouse device to the complex simulation of physically based animation.

Based on experiences from an autonomous mobile robot project called MOBOT -III, we found hard realtime-constraints for the operating-system-design. ALBATROSS is "A flexible multi-tasking and realtime network-operatingsystem-kernel", not limited to mobile- robot-projects only, but which might be useful also wherever you have to guarantee a high reliability of a realtime-system. The focus in this article is on a communication-scheme fulfilling the demanded (hard realtime-) assurances although not implying time-delays or jitters on the critical informationchannels. The central chapters discuss a locking-free shared buffer management, without the need for interrupts and a way to arrange the communication architecture in order to produce minimal protocol-overhead and short cycle-times. Most of the remaining communication-capacity (if there is any) is used for redundant transfers, increasing the reliability of the whole system. ALBATROSS is actually implemented on a multi-processor VMEbus-system.

Case-based problem solving can be significantly improved by applying domain knowledge (in opposition to problem solving knowledge), which can be acquired with reasonable effort, to derive explanations of the correctness of a case. Such explanations, constructed on several levels of abstraction, can be employed as the basis for similarity assessment as well as for adaptation by solution refinement. The general approach for explanation-based similarity can be applied to different real world problem solving tasks such as diagnosis and planning in technical areas. This paper presents the general idea as well as the two specific, completely implemented realizations for a diagnosis and a planning task.

In this paper we present an interpreter which allows to support the validation of conceptual models in early stages of the development. We compare hypermedia and expert system approaches to knowledge processing and show how an integrated approach eases the creation of expert systems. Our knowledge engineering tool CoMo-Kit allows a "smooth" transition from initial protocols via a semi-formal specification based on a typed hypertext up to an running expert system. The interpreter uses the intermediate hypertext representation for the interactive solution of problems. Thereby, tasks are distributed to agents via an local area network. This means that the specification of an expert system can directly be used to solve real world problems. If there exist formal (operational) specifications for subtasks then these are delegated to computers. Therefore, our approach allows to specify and validate distributed, cooperative systems where some subtasks are solved by humans and other subtasks are solved automatically by computers.

We study deterministic conditional rewrite systems, i.e. conditional rewrite systemswhere the extra variables are not totally free but 'input bounded'. If such a systemR is quasi-reductive then !R is decidable and terminating. We develop a critical paircriterion to prove confluence if R is quasi-reductive and strongly deterministic. In thiscase we prove that R is logical, i.e./!R==R holds. We apply our results to proveHorn clause programs to be uniquely terminating.This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314, Project D4

We investigate restricted termination and confluence properties of term rewritADing systems, in particular weak termination and innermost termination, and theirinterrelation. New criteria are provided which are sufficient for the equivalenceof innermost / weak termination and uniform termination of term rewriting sysADtems. These criteria provide interesting possibilities to infer completeness, i.e.termination plus confluence, from restricted termination and confluence properADties.Using these basic results we are also able to prove some new results aboutmodular termination of rewriting. In particular, we show that termination ismodular for some classes of innermost terminating and locally confluent termrewriting systems, namely for nonADoverlapping and even for overlay systems. Asan easy consequence this latter result also entails a simplified proof of the factthat completeness is a decomposable property of soADcalled constructor systems.Furthermore we show how to obtain similar results for even more general cases of(nonADdisjoint) combined systems with shared constructors and of certain hierarADchical combinations of systems with constructors. Interestingly, these modularityresults are obtained by means of a proof technique which itself constitutes a modADular approach.

SPIN-NFDS Learning and Preset Knowledge for Surface Fusion - A Neural Fuzzy Decision System -
(1993)

The problem to be discussed in this paper may be characterized in short by the question: "Are these two surface fragments belonging together (i.e. belonging to the same surface)?" The presented techniques try to benefit from some predefined knowledge as well as from the possibility to refine and adapt this knowledge according to a (changing) real environment, resulting in a combination of fuzzy-decision systems and neural networks. The results are encouraging (fast convergence speed, high accuracy), and the model might be used for a wide range of applications. The general frame surrounding the work in this paper is the SPIN- project, where emphasis is on sub-symbolic abstractions, based on a 3-d scanned environment.

This paper refers to the problem of adaptability over an infinite period of time, regarding dynamic networks. A never ending flow of examples have to be clustered, based on a distance measure. The developed model is based on the self-organizing feature maps of Kohonen [6], [7] and some adaptations by Fritzke [3]. The problem of dynamic surface classification is embedded in the SPIN project, where sub-symbolic abstractions, based on a 3-d scanned environment is being done.

This report contains a collection of abstracts for talks given at the "Deduktionstreffen" held at Kaiserslautern, October 6 to 8, 1993. The topics of the talks range from theoretical aspects of term rewriting systems and higher order resolution to descriptions of practical proof systems in various applications. They are grouped together according the following classification: Distribution and Combination of Theorem Provers, Termination, Completion, Functional Programs, Inductive Theorem Proving, Automatic Theorem Proving, Proof Presentation. The Deduktionstreffen is the annual meeting of the Fachgruppe Deduktionssysteme in the Gesellschaft für Informatik (GI), the German association for computer science.

Four different initialization methods for parallel Branch-and-bound algorithms are described and compared with reference to several criteria. A formal analysis of their idle times and efficiency follows. It indicates that the efficiency of three methods depends on the branching factor of the search tree. Furthermore, the fourth method offers the best efficiency of the overall algorithm when a centralized OPEN set is used. Experimental results by a PRAM simulation support these statements.

Shadow-Mapping
(1993)

Most radiosity techniques store radiosities in certain sample points, typically the vertices of polyhedral scenes. As diffuse radiosities are view independent they can be used for an interactive 'walk-through'. This paper presents an algorithm for storing radiosities independent of the representation of the object. A distributed rendering system, which uses this shadow-mapping technique is described. The basic thermophysical definitions, needed to derive a sum formula for a form factor calculation of polygons, are explained.

This paper describes some new algorithms for the accurate calculation of surface properties. In the first part an arithmetic on Bézier surfaces is introduced. Formulas are given, which determine the Bézier points and weights of the resulting surface from the points and weights of the operand surfaces. An application of the arithmetic operations to the surface interrogation methods are described in the second part. It turns out, that the quality analysis can be reduced to a few numerical stable operations. Finally the advantages and disadvantages of this method are discussed.

The composition of Bézier curves and tensor product Bézier surfaces, polynomial as well as rational, is applied to exactly and explicitely represent trim curves of tensor product Bézier surfaces. Trimming curves are assumed to be defined as Bézier curves in surface parameter domain. A Bézier spline approximation of lower polynomial degree is built up as weil which is based on the exact trim curve representation in coordinate space.

Within the present paper we investigate case-based representability as well as case-based learnability of indexed families of uniformly recursive languages. Since we are mainly interested in case-based learning with respect to an arbitrary fixed similarity measure, case-based learnability of an indexed family requires its representability, first. We show that every indexed family is case- based representable by positive and negative cases. If only positive cases are allowed the class of representable families is comparatively small. Furthermore, we present results that provide some bounds concerning the necessary size of case bases. We study, in detail, how the choice of a case selection strategy influences the learning capabilities of a case-based learner. We define different case selection strategies and compare their learning power to one another. Furthermore, we elaborate the relations to Gold-style language learning from positive and both positive and negative examples.

While symbolic learning approaches encode the knowledge provided by the presentation of the cases explicitly into a symbolic representation of the concept, e.g. formulas, rules, or decision trees, case-based approaches describe learned concepts implicitly by a pair (CB; d), i.e. by a set CB of cases and a distance measure d. Given the same information, symbolic as well as the case-based approach compute a classification when a new case is presented. This poses the question if there are any differences concerning the learning power of the two approaches. In this work we will study the relationship between the case base, the measure of distance, and the target concept of the learning process. To do so, we transform a simple symbolic learning algorithm (the version space algorithm) into an equivalent case-based variant. The achieved results strengthen the conjecture of the equivalence of the learning power of symbolic and casebased methods and show the interdependency between the measure used by a case-based algorithm and the target concept.

In this paper we describe a framework for defining and operationalizing conceptual models of distributed knowledge-based systems which extends published approaches by the notion of ,agents" and multiple task decompositions. The main part deals with techniques underlying our distributed interpreter. We show how a client-server-architecture can be implemented which allows prototyping distributed knowledge-based systems. Further we describe our mechanism which manages task interactions and supports dependency-directed backtracking efficiently.

Automatic proof systems are becoming more and more powerful.However, the proofs generated by these systems are not met withwide acceptance, because they are presented in a way inappropriatefor human understanding.In this paper we pursue two different, but related, aims. First wedescribe methods to structure and transform equational proofs in away that they conform to human reading conventions. We developalgorithms to impose a hierarchical structure on proof protocols fromcompletion based proof systems and to generate equational chainsfrom them.Our second aim is to demonstrate the difficulties of obtaining suchprotocols from distributed proof systems and to present our solutionto these problems for provers using the TEAMWORK method. Wealso show that proof systems using this method can give considerablehelp in structuring the proof listing in a way analogous to humanbehaviour.In addition to theoretical results we also include descriptions onalgorithms, implementation notes, examples and data on a variety ofexamples.

Based on the idea of using topologic feature-mapsinstead of geometric environment maps in practical mobile robot tasks, we show an applicable way tonavigate on such topologic maps. The main features regarding this kind of navigation are: handling of very inaccurate position (and orientation) information as well as implicit modelling of complex kinematics during an adaptation phase. Due to the lack of proper a-priori knowledge, a re-inforcement based model is used for the translation of navigator commands to motor actions. Instead of employing a backpropagation network for the cen-tral associative memory module (attaching actionprobabilities to sensor situations resp. navigatorcommands) a much faster dynamic cell structure system based on dynamic feature maps is shown. Standard graph-search heuristics like A* are applied in the planning phase.

The problem to be discussed here, is the usage of neural network clustering techniques on a mobile robot, in order to build qualitative topologic environment maps. This has to be done in realtime, i.e. the internal world model has to be adapted by the flow of sensor- samples without the possibility to stop this data-flow.Our experiments are done in a simulation environment as well as on a robot, called ALICE.

Visual Search has been investigated by many researchers inspired by the biological fact, that the sensory elements on the mammal retina are not equably distributed. Therefore the focus of attention (the area of the retina with the highest density of sensory elements) has to be directed in a way to efficiently gather data according to certain criteria. The work discussed in this article concentrates on applying a laser range finder instead of a silicon retina. The laser range finder is maximal focused at any time, but therefore a low resolution total-scene-image, available with camera-like devices from scratch on, cannot be used here. By adapting a couple of algorithms, the edge-scanning module steering the laser range finder is able to trace a detected edge. Based on the data scanned so far , two questions have to be answered. First: "Should the actual (edge-) scanning be interrupted in order to give another area of interest a chance of being investigated?" and second: "Where to start a new edge-scanning, after being interrupted?". These two decision-problems might be solved by a range of decision systems. The correctness of the decisions depends widely on the actual environment and the underlying rules may not be well initialized with a-priori knowledge. So we will present a version of a reinforcement decision system together with an overall scheme for efficiently controlling highly focused devices.

ALICE
(1994)

The introduction of sorts to first-order automated deduc-tion has brought greater conciseness of representation and a considerablegain in efficiency by reducing search spaces. This suggests that sort in-formation can be employed in higher-order theorem proving with similarresults. This paper develops a sorted (lambda)-calculus suitable for automatictheorem proving applications. It extends the simply typed (lambda)-calculus by ahigher-order sort concept that includes term declarations and functionalbase sorts. The term declaration mechanism studied here is powerfulenough to subsume subsorting as a derived notion and therefore gives ajustification for the special form of subsort inference. We present a set oftransformations for sorted (pre-) unification and prove the nondetermin-istic completeness of the algorithm induced by these transformations.

Termination of Rewriting
(1994)

More and more, term rewriting systems are applied in computer science aswell as in mathematics. They are based on directed equations which may be used as non-deterministic functional programs. Termination is a key property for computing with termrewriting systems.In this thesis, we deal with different classes of so-called simplification orderings which areable to prove the termination of term rewriting systems. Above all, we focus on the problemof applying these termination methods to examples occurring in practice. We introduce aformalism that allows clear representations of orderings. The power of classical simplifica-tion orderings - namely recursive path orderings, path and decomposition orderings, Knuth-Bendix orderings and polynomial orderings - is improved. Further, we restrict these orderingssuch that they are compatible with underlying AC-theories by extending well-known methodsas well as by developing new techniques. For automatically generating all these orderings,heuristic-based algorithms are given. A comparison of these orderings with respect to theirpowers and their time complexities concludes the theoretical part of this thesis. Finally, notonly a detailed statistical evaluation of examples but also a brief introduction into the designof a software tool representing the integration of the specified approaches is given.

A Case Study on Specifikation,Detection and Resolution of IN Feature Interactions with Estelle
(1994)

We present an approach for the treatment of Feature Interactions in Intelligent Networks. The approach is based on the formal description technique Estelle and consists of three steps. For the first step, a specification style supporting the integration of additional features into a basic service is introduced . As a result, feature integration is achieved by adding specification text, i.e . on a purely syntactical level. The second step is the detection of feature interactions resulting from the integration of additional features. A formal criterion is given that can be used for the automatic detection of a particular class of feature interactions. In the third step, previously detected feature interactions are resolved. An algorithm has been devised that allows the automatical incorporation of high-level design decisions into the formal specification. The presented approach is applied to the Basic Call Service and several supplementary interacting features.

We present a convenient notation for positive/negativeADconditional equations. Theidea is to merge rules specifying the same function by using caseAD, ifAD, matchAD, and letADexpressions.Based on the presented macroADruleADconstruct, positive/negativeADconditional equational specifiADcations can be written on a higher level. A rewrite system translates the macroADruleADconstructsinto positive/negativeADconditional equations.

A method for efficiently handling associativity and commutativity (AC) in implementations of (equational) theorem provers without incorporating AC as an underlying theory will be presented. The key of substantial efficiency gains resides in a more suitable representation of permutation-equations (such as f(x,f(y,z))=f(y,f(z,x)) for instance). By representing these permutation-equations through permutations in the mathematical sense (i.e. bijective func- tions :{1,..,n} {1,..,n}), and by applying adapted and specialized inference rules, we can cope more appropriately with the fact that permutation-equations are playing a particular role. Moreover, a number of restrictions concerning application and generation of permuta- tion-equations can be found that would not be possible in this extent when treating permu- tation-equations just like any other equation. Thus, further improvements in efficiency can be achieved.

This paper presents fill algorithms for boundary-defined regions in raster graphics. The algorithms require only a constant size working memory. The methods presented are based on the so-called "seed fill" algorithms using the internal connectivity of the region with a given inner point. Basic methods as well as additional heuristics for speeding up the algorithm are described and verified. For different classes of regions, the time complexity of the algorithms is compared using empirical results.

We introduce the concept of streamballs for fluid flow visualization. Streamballs are based upon implicit surface generation techniques adopted from the well-known metaballs. Their property to split or merge automatically in areas of significant divergence or convergence makes them an ideal tool for the visualization of arbitrary complex flow fields. Using convolution surfaces generated by continuous skeletons for streamball construction offers the possibility to visualize even tensor fields.

The problem to interpolate Hermite-type data (i.e. two points with attached tangent vectors) with elastic curves of prescribed tension is known to have multiple solutions. A method is presented that finds all solutions of length not exceeding one period of its curvature function. The algorithm is based on algebraic relations between discrete curvature information which allow to transform the problem into a univariate one. The method operates with curves that by construction partially interpolate the given data. Hereby the objective function of the problem is drastically simplified. A bound on the maximum curvature value is established that provides an interval containing all solutions.

Best-Fit Pattern Matching
(1994)

This report shows that dispatching of methods in object oriented languages is in principle the same as best fit pattern matching. A general conceptual description of best fit pattern matching is presented. Many object oriented features are modelled by means of the general concept. This shows that simple methods, multi methods, overloading of functions, pattern matching,
dynamic and union types, and extendable records can be combined in a single comprehensive concept.

We study the complexity of local solution of Fredholm integral equations. This means that we want to compute not the full solution, but rather a functional (weighted mean, value in a point) of it. For certain Sobolev classes of multivariate periodic functions we prove matching upper and lower bounds and construct an algorithm of the optimal order, based on Fourier coefficients and a hyperbolic cross approximation.

In this paper the complexity of the local solution of Fredholm integral equations
is studied. For certain Sobolev classes of multivariate periodic functions with dominating mixed derivative we prove matching lower and upper bounds. The lower bound is shown using relations to s-numbers. The upper bound is proved in a constructive way providing an implementable algorithm of optimal order based on Fourier coefficients and a hyperbolic cross approximation.

The Basic Reference Model of ODP introduces a number of basic concepts in order to provide a common basis for the development of a coherent set of standards. To achieve this objective, a clear understanding of the basic concepts is one prerequisite. This paper makes an effort at clarifying some of the basic concepts independently of standardized or non-standardized formal description techniques. Among the basic concepts considered here are: agent, action, interaction, interaction point, architecture, behaviour, system, composition, refinement, and abstraction. In a case study, it is then shown how these basic concepts can be represented in a formal specification written in temporal logic.

Free Form Volumes
(1994)

Visualization of large data sets, especially on small machines, requires advanced techniques in image processing and image generation. Our hybrid raytracer is capable of rendering volumetric and geometric data simultaneously, without loss of accuracy due to data conversion. Compound data sets, consisting of several types of data, are called "hybrid data sets". There is only one rendering pipeline to obtain loss-less and efficient visualization of hybrid data. Algorithms apply to both types of data. Optical material properties are stored in the same data base for both volumetric and geometric objects, and anti-aliasing methods appeal to both data types. Stereoscopic display routines have been added to obtain true three-dimensional visualization on various media, and animation features allow generation of recordable 3-D sequences.

The main problem in computer graphics is to solve the global illumination problem,
which is given by a Fredholm integral equation of the second kind, called the radiance equation (REQ). In order to achieve realistic images, a very complex kernel
of the integral equation, modelling all physical effects of light, must be considered. Due to this complexity Monte Carlo methods seem to be an appropriate approach to solve the REQ approximately. We show that replacing Monte Carlo by quasi-Monte Carlo in some steps of the algorithm results in a faster convergence.

Optimization of Projection Methods for Solving ill-posed Problems. In this paper we propose a modification of the projection scheme for solving ill-posed problems. We show that this modification allows to obtain the best possible order of accuracy of Tikhonov Regularization using an amount of information which is far less than for the standard projection technique.

The rapid development of any field of knowledge brings with it unavoidable fragmentation and proliferation of new disciplines. The development of computer science is no exception. Software engineering (SE) and human-computer interaction (HCI) are both relatively new disciplines of computer science. Furthermore, as both names suggest, they each have strong connections with other subjects. SE is concerned with methods and tools for general software development based on engineering principles. This discipline has its roots not only in computer science but also in a number of traditional engineering disciplines. HCI is concerned with methods and tools for the development of human-computer interfaces, assessing the usability of computer systems and with broader issues about how people interact with computers. It is based on theories about how humans process information and interact with computers, other objects and other people in the organizational and social contexts in
which computers are used. HCI draws on knowledge and skills from psychology, anthropology and sociology in addition to computer science. Both disciplines need ways of measuring how well their products and development processes fulfil their intended requirements. Traditionally SE has been concerned with 'how software is constructed' and HCI with 'how people use software'. Given the
different histories of the disciplines and their different objectives, it is not surprising that they take different approaches to measurement. Thus, each has its own distinct 'measurement culture.' In this paper we analyse the differences and the commonalties of the two cultures by examining the measurement approaches used by each. We then argue the need for a common measurement taxonomy and framework, which is derived from our analyses of the two disciplines. Next we demonstrate the usefulness of the taxonomy and framework via specific example studies drawn from our own work and that of others and show that, in fact, the two disciplines have many important similarities as well as differences and that there is some evidence to suggest that they are growing closer. Finally, we discuss the role of the taxonomy as a framework to support: reuse, planning future studies, guiding practice and facilitating communication between the two disciplines.

Hardware / Software Codesign
(1994)

Monte Carlo integration is often used for antialiasing in rendering processes.
Due to low sampling rates only expected error estimates can be stated, and the variance can be high. In this article quasi-Monte Carlo methods are presented, achieving a guaranteed upper error bound and a convergence rate essentially as fast as usual Monte Carlo.

The radiance equation, which describes the global illumination problem in computer graphics, is a high dimensional integral equation. Estimates of the solution are usually computed on the basis of Monte Carlo methods. In this paper we propose and investigate quasi-Monte Carlo methods, which means that we replace (pseudo-) random samples by low discrepancy sequences, yielding deterministic algorithms. We carry out a comparative numerical study between Monte Carlo and quasi-Monte Carlo methods. Our results show that quasi-Monte Carlo converges considerably faster.

This report presents a generalization of tensor-product B-spline surfaces. The new scheme permits knots whose endpoints lie in the interior of the domain rectangle of a surface. This allows local refinement of the knot structure for approximation purposes as well as modeling surfaces with local tangent or curvature discontinuities. The surfaces are represented in terms of B-spline basis functions, ensuring affine invariance, local control, the convex hull property, and evaluation by de Boor's algorithm. A dimension formula for a class of generalized tensor-product spline spaces is developed.

World models for mobile robots as introduced in many projects, are mostly redundant regarding similar situations detected in different places. The present paper proposes a method for dynamic generation of a minimal world model based on these redundancies. The technique is an extention of the qualitative topologic world modelling methods. As a central aspect the reliability regarding errortolerance and stability will be emphasized. The proposed technique demands very low constraints on the kind and quality of the employed sensors as well as for the kinematic precision of the utilized mobile platform. Hard realtime constraints can be handled due to the low computational complexity. The principal discussions are supported by real-world experiments with the mobile robot "

We describe a hybrid case-based reasoning system supporting process planning for machining workpieces. It integrates specialized domain dependent reasoners, a feature-based CAD system and domain independent planning. The overall architecture is built on top of CAPlan, a partial-order nonlinear planner. To use episodic problem solving knowledge for both optimizing plan execution costs and minimizing search the case-based control component CAPlan/CbC has been implemented that allows incremental acquisition and reuse of strategical problem solving experience by storing solved problems as cases and reusing them in similar situations. For effective retrieval of cases CAPlan/CbC combines domain-independent and domain-specific retrieval mechanisms that are based on the hierarchical domain model and problem representation.

Structured domains are characterized by the fact that there is an intrinsic dependency between certain key elements in the domain. Considering these dependencies leads to better performance of the planning systems, and it is an important factor for determining the relevance of the cases stored in a case-base. However, testing for cases that meet these dependencies, decreases the performance of case-based planning, as other criterions need also to be consider for determining this relevance. We present a domain-independent architecture that explicitly represents these dependencies so that retrieving relevant cases is ensured without negatively affecting the performance of the case-based planning process.

Correctness and runtime efficiency are essential properties of software ingeneral and of high-speed protocols in particular. Establishing correctnessrequires the use of FDTs during protocol design, and to prove the protocolcode correct with respect to its formal specification. Another approach toboost confidence in the correctness of the implementation is to generateprotocol code automatically from the specification. However, the runtimeefficiency of this code is often insufficient. This has turned out to be amajor obstacle to the use of FDTs in practice.One of the FDTs currently applied to communication protocols is Es-telle. We show how runtime efficiency can be significantly improved byseveral measures carried out during the design, implementation and run-time of a protocol. Recent results of improvements in the efficiency ofEstelle-based protocol implementations are extended and interpreted.

We describe a hybrid architecture supporting planning for machining workpieces. The architecture is built around CAPlan, a partial-order nonlinear planner that represents the plan already generated and allows external control decision made by special purpose programs or by the user. To make planning more efficient, the domain is hierarchically modelled. Based on this hierarchical representation, a case-based control component has been realized that allows incremental acquisition of control knowledge by storing solved problems and reusing them in similar situations.

Evaluation is an important issue for every scientific field and a necessity for an emerging soft-ware technology like case- based reasoning. This paper is a supplementation to the review of industrial case-based reasoning tools by K.-D. Althoff, E. Auriol, R. Barletta and M. Manago which describes the most detailed evaluation of commercial case-based reasoning tools currently available. The author focuses on some important aspects that correspond to the evaluation ofcase-based reasoning systems and gives links to ongoing research.

Case-Based Reasoning for Decision Support and Diagnostic Problem Solving: The INRECA Approach
(1995)

INRECA offers tools and methods for developing, validating, and maintaining decision support systems. INRECA's basic technologies are inductive and case-based reasoning, namely KATE -INDUCTION (cf., e.g., Manago, 1989; Manago, 1990) and S3-CASE, a software product based on PATDEX (cf., e.g., Wess,1991; Richter & Wess, 1991; Althoff & Wess, 1991). Induction extracts decision knowledge from case databases. It brings to light patterns among cases and helps monitoring trends over time. Case-based rea -soning relates the engineer's current problem to past experiences.

Self-localization in unknown environments respectively correlation of current and former impressions of the world is an essential ability for most mobile robots. The method,proposed in this article is the construction of a qualitative, topological world model as a basis for self-localization. As a central aspect the reliability regarding error-tolerance and stability will be emphasized. The proposed techniques demand very low constraints for the kind and quality of the employed sensors as well as for the kinematic precisionof the utilized mobile platform. Hard real-time constraints can be handled due to the low computational complexity. The principal discussions are supported by real-world experiments with the mobile robot.

In this paper the autonomous mobile vehicle MOBOT-IV is presented, which is capable of exploring an indoor-environment while building up an internal representation of its world. This internal model is used for the navigation of the vehicle during and after the exploration phase. In contrast to methods, which use a grid based or line based environment representation, in the approach presented in this paper, local sector maps are the basic data structure of the world model. This paper describes the method of the view-point-planning for map building, the use of this map for navigation and the method of external position estimation including the hand- ling of an position error in a moving real-time system.

The well-known and powerful proof principle by well-founded induction says that for verifying \(\forall x : P (x)\) for some property \(P\) it suffices to show \(\forall x : [[\forall y < x :P (y)] \Rightarrow P (x)] \) , provided \(<\) is a well-founded partial ordering on the domainof interest. Here we investigate a more general formulation of this proof principlewhich allows for a kind of parameterized partial orderings \(<_x\) which naturallyarises in some cases. More precisely, we develop conditions under which theparameterized proof principle \(\forall x : [[\forall y <_x x : P (y)] \Rightarrow P (x)]\) is sound in thesense that \(\forall x : [[\forall y <_x x : P (y)] \Rightarrow P (x)] \Rightarrow \forall x : P (x)\) holds, and givecounterexamples demonstrating that these conditions are indeed essential.

We study the combination of the following already known ideas for showing confluence ofunconditional or conditional term rewriting systems into practically more useful confluence criteria forconditional systems: Our syntactic separation into constructor and non-constructor symbols, Huet's intro-duction and Toyama's generalization of parallel closedness for non-noetherian unconditional systems, theuse of shallow confluence for proving confluence of noetherian and non-noetherian conditional systems, theidea that certain kinds of limited confluence can be assumed for checking the fulfilledness or infeasibilityof the conditions of conditional critical pairs, and the idea that (when termination is given) only primesuperpositions have to be considered and certain normalization restrictions can be applied for the sub-stitutions fulfilling the conditions of conditional critical pairs. Besides combining and improving alreadyknown methods, we present the following new ideas and results: We strengthen the criterion for overlayjoinable noetherian systems, and, by using the expressiveness of our syntactic separation into constructorand non-constructor symbols, we are able to present criteria for level confluence that are not criteria forshallow confluence actually and also able to weaken the severe requirement of normality (stiffened withleft-linearity) in the criteria for shallow confluence of noetherian and non-noetherian conditional systems tothe easily satisfied requirement of quasi-normality. Finally, the whole paper also gives a practically usefuloverview of the syntactic means for showing confluence of conditional term rewriting systems.

We present a method for learning heuristics employed by an automated proverto control its inference machine. The hub of the method is the adaptation of theparameters of a heuristic. Adaptation is accomplished by a genetic algorithm.The necessary guidance during the learning process is provided by a proof prob-lem and a proof of it found in the past. The objective of learning consists infinding a parameter configuration that avoids redundant effort w.r.t. this prob-lem and the particular proof of it. A heuristic learned (adapted) this way canthen be applied profitably when searching for a proof of a similar problem. So,our method can be used to train a proof heuristic for a class of similar problems.A number of experiments (with an automated prover for purely equationallogic) show that adapted heuristics are not only able to speed up enormously thesearch for the proof learned during adaptation. They also reduce redundancies inthe search for proofs of similar theorems. This not only results in finding proofsfaster, but also enables the prover to prove theorems it could not handle before.

The feature interaction problem in telecommunications systems increasingly ob-structs the evolution of such systems. We develop formal detection criteria whichrender a necessary (but less than sufficient) condition for feature interactions. It can be checked mechanically and points out all potentially critical spots. Thesehave to be analysed manually. The resulting resolution decisions are incorporatedformally. Some prototype tool support is already available. A prerequisite forformal criteria is a formal definition of the problem. Since the notions of featureand feature interaction are often used in a rather fuzzy way, we attempt a formaldefinition first and discuss which aspects can be included in a formalization (andtherefore in a detection method). This paper describes ongoing work.

In dieser Dissertation wird das Konzept der Gröbnerbasen für endlich erzeugte Monoid-und Gruppenringe verallgemeinert. Dabei werden Reduktionsmethoden sowohl zurDarstellung der Monoid- beziehungsweise Gruppenelemente, als auch zur Beschreibungder Rechtsidealkongruenz in den entsprechenden Monoid- beziehungsweise Gruppenrin-gen benutzt. Da im allgemeinen Monoide und insbesondere Gruppen keine zulässigenOrdnungen mehr erlauben, treten bei der Definition einer geeigneten Reduktionsrela-tion wesentliche Probleme auf: Zum einen ist es schwierig, die Terminierung einer Re-duktionsrelation zu garantieren, zum anderen sind Reduktionsschritte nicht mehr mitMultiplikationen verträglich und daher beschreiben Reduktionen nicht mehr unbedingteine Rechtsidealkongruenz. In dieser Arbeit werden verschiedene Möglichkeiten Reduk-tionsrelationen zu definieren aufgezeigt und im Hinblick auf die beschriebenen Problemeuntersucht. Dabei wird das Konzept der Saturierung, d.h. eine Polynommenge so zu er-weitern, daß man die von ihr erzeugte Rechtsidealkongruenz durch Reduktion erfassenkann, benutzt, um Charakterisierungen von Gröbnerbasen bezüglich der verschiedenenReduktionen durch s-Polynome zu geben. Mithilfe dieser Konzepte ist es gelungenfür spezielle Klassen von Monoiden, wie z.B. endliche, kommutative oder freie, undverschiedene Klassen von Gruppen, wie z.B. endliche, freie, plain, kontext-freie odernilpotente, unter Ausnutzung struktureller Eigenschaften spezielle Reduktionsrelatio-nen zu definieren und terminierende Algorithmen zur Berechnung von Gröbnerbasenbezüglich dieser Reduktionsrelationen zu entwickeln.

Problems stemming from the study of logic calculi in connection with an infer-ence rule called "condensed detachment" are widely acknowledged as prominenttest sets for automated deduction systems and their search guiding heuristics. Itis in the light of these problems that we demonstrate the power of heuristics thatmake use of past proof experience with numerous experiments.We present two such heuristics. The first heuristic attempts to re-enact aproof of a proof problem found in the past in a flexible way in order to find a proofof a similar problem. The second heuristic employs "features" in connection withpast proof experience to prune the search space. Both these heuristics not onlyallow for substantial speed-ups, but also make it possible to prove problems thatwere out of reach when using so-called basic heuristics. Moreover, a combinationof these two heuristics can further increase performance.We compare our results with the results the creators of Otter obtained withthis renowned theorem prover and this way substantiate our achievements.

In this paper, the complexity of full solution of Fredholm integral equations of the second kind with data from the Sobolev class \(W^r_2\) is studied. The exact order of information complexity is derived. The lower bound is proved using a Gelfand number technique. The upper bound is shown by providing a concrete algorithm of optimal order, based on a specific hyperbolic cross approximation of the kernel function. Numerical experiments are included, comparing the optimal algorithm with the standard Galerkin method.

Experience gathered from applying the software process modeling language MVP-L in software development organizations has shown the need for graphical representations of process models. Project members (i.e„ non MVP-L specialists) review models much more easily by using graphical representations. Although several various graphical notations were developed for individual projects in which MVP-L was applied, there was previously no consistent definition of a mapping between textual MVP-L models and graphical representations. This report defines a graphical representation schema for MVP-L
descriptions and combines previous results in a unified form. A basic set of building blocks (i.e., graphical symbols and text fragments) is defined, but because we must first gain experience with the new symbols, only rudimentary guidelines are given for composing basic
symbols into a graphical representation of a model.

Intellectual control over software development projects requires the existence of an integrated set of explicit models of the products to be developed, the processes used to develop them, the resources needed, and the productivity and quality aspects involved. In recent years the development of languages, methods and tools for modeling software processes, analyzing and enacting them has become a major emphasis of software engineering research. The majority of current process research concentrates on prescriptive modeling of small, completely formalizable processes and their execution entirely on computers. This research direction has produced process modeling languages suitable for machine rather than human consumption. The MVP project, launched at the University of Maryland and continued at Universität Kaiserslautern, emphasizes building descriptive models of large, real-world processes and their use by humans and computers for the purpose of understanding, analyzing, guiding and improving software development projects. The language MVP-L has been developed with these purposes in mind. In this paper, we
motivate the need for MVP-L, introduce the prototype language, and demonstrate its uses. We assume that further improvements to our language will be triggered by lessons learned from applications and experiments.

Optimal degree reductions, i.e. best approximations of \(n\)-th degree Bezier curves
by Bezier curves of degree \(n\) - 1, with respect to different norms are studied. It
is shown that for any \(L_p\)-norm the euclidean degree reduction where the norm is applied to the euclidean distance function of two curves is identical to componentwise degree reduction. The Bezier points of the degree reductions are found to lie on parallel lines through the Bezier points of any Taylor expansion of degree \(n\) - 1 of the original curve. This geometric situation is shown to hold also in the case of constrained degree reduction. The Bezier points of the degree reduction are explicitly given in the unconstrained case for \(p\) = 1 and \(p\) = 2 and in the constrained case for \(p\) = 2.

The local solution problem of multivariate Fredholm integral equations is studied. Recent research proved that for several function classes the complexity of this problem is closely related to the Gelfand numbers of some characterizing operators. The generalization of this approach to the situation of arbitrary Banach spaces is the subject of the present paper.
Furthermore, an iterative algorithm is described which - under some additional conditions - realizes the optimal error rate. The way these general theorems work is demonstrated by applying them to integral equations in a Sobolev space of periodic functions with dominating mixed derivative of various order.

This paper introduces a new high Level programming language for a novel
class of computational devices namely data-procedural machines. These machines are by up to several orders of magnitude more efficient than the von Neumann paradigm of computers and are as flexible and as universal as computers. Their efficiency and flexibility is achieved by using field-programmable logic as the essential technology platform. The paper briefly summarizes and illustrates the essential new features of this language by means of two example programs.

A new variance reduction technique for the Monte Carlo solution of integral
equations is introduced. It is based on separation of the main part. A neighboring equation with exactly known solution is constructed by the help of a deterministic Galerkin scheme. The variance of the method is analyzed, and an application to the radiosity equation of computer graphics, together with numerical test results is given.

In this paper an analytic hidden surface removal algorithm is presented which uses a combination
of 2D and 3D BSP trees without involving point sampling or scan conversion. Errors like aliasing
which result from sampling do not occur while using this technique. An application of this
algorithm is outlined which computes the energy locally reflected from a surface having an
arbitrary BRDF. A simplification for diffuse reflectors is described, which has been implemented
to compute analytic form factors from diffuse light sources to differential receivers as they are needed for shading and radiosity algorithms.

The CAD/CAM-based design of free-form surfaces is the beginning of a chain of operations, which ends with the numerically controlled (NC-) production of the designed object. During this process the shape control is an important step to amount efficiency. Several surface interrogation methods already exist to analyze curvature and continuity behaviour of the shape. This paper deals with a new aspect of shape control: the stability of surfaces with respect to infnitesimal bendings. Each inEnitesimal bending of a surface determines a so called instability surface, which is used for the stability investigations. The kinematic meaning of this instability surface will be discussed and we present algorithms to calculate it.

Computer processing of free form surfaces forms the basis of a closed construction process starting with surface design and up to NC-production.
Numerical simulation and visualization allow quality analysis before manufacture. A new aspect in surface analysis is described, the stability
of surfaces versus infinitesimal bendings. The stability concept is derived
from the kinetic meaning of a special vector field which is given by the deformation. Algorithms to calculate this vector field together with an appropriate visualization method give a tool able to analyze surface stability.

The \(L_2\)-discrepancy is a quantitative measure of precision for multivariate quadrature rules. It can be computed explicitly. Previously known algorithms needed \(O(m^2\)) operations, where \(m\) is the number of nodes. In this paper we present algorithms which require
\(O(m(log m)^d)\) operations.

We present a similarity criterion based on feature weighting. Feature weights are recomputed dynamically according to the performance of cases during problem solving episodes. We will also present a novel algorithm to analyze and explain the performance of the retrieved cases and to determine the features whose weights need to be recomputed. We will perform experiments and show that the integration in a feature weighting model of our similarity criterion with our analysis algorithm improves the adaptability of the retrieved cases by converging to best weights for the features over a period of multiple problem solving episodes.

Planning for manufacturing workpieces is a complex task that requires the interaction of a domain-specific reasoner and a generic planning mechanism. In this paper we present an architecture for organizing the case base that is based on the information provided by a generic problem solver. A retrieval procedure is then presented that uses the information provided by the domain-specific reasoner in order to improve the accuracy of the cases retrieved. However, it is not realistic to suppose that the case retrieved will entirely fit into the new problem. We present a replay procedure to obtain a partial solution that replays not only the valid decisions taken for solving the case, but also justifications of rejected decisions made during the problem solving process. As a result, those completion alternatives of the partial solution are discarded that are already known to be invalid from the case.

Complete Eager Replay
(1996)

We present an algorithm for completely replaying previous problem solving experiences for plan-space planners. In our approach not only the solution trace is replayed, but also the explanations of failed attempts made by the first-principle planner. In this way, the capability of refitting previous solutions into new problems is improved.

This paper addresses the role of abstraction in case-based reasoning. We develop a general framework for reusing cases at several levels of abstraction, which is particularly suited for describing and analyzing existing and designing new approaches of this kind. We show that in synthetic tasks (e.g. configuration, design, and planning), abstraction can be successfully used to improve the efficiency of similarity assessment, retrieval, and adaptation. Furthermore, a case-based planning system, called Paris, is described and analyzed in detail using this framework. An empirical study done with Paris demonstrates significant advantages concerning retrieval and adaptation efficiency as well as flexibility of adaptation. Finally, we show how other approaches from the literature can be classified according to the developed framework.

This paper is to present a new algorithm, called KNNcost, for learning feature weights for CBR systems used for classification. Unlike algorithms known so far, KNNcost considers the profits of a correct and the cost of a wrong decision. The need for this algorithm is motivated from two real-world applications, where cost and profits of decisions play a major role. We introduce a representation of accuracy, cost and profits of decisions and define the decision cost of a classification system. To compare accuracy optimization with cost optimization, we tested KNNacc against KNNcost. The first one optimizes classification accuracy with a conjugate gradient algorithm. The second one optimizes the decision cost of the CBR system, respecting cost and profits of the classifications. We present experiments with these two algorithms in a real application to demonstrate the usefulness of our approach.

When problems are solved through reasoning from cases, the primary kind of knowledge is contained in the specific cases which are stored in the case base. However, in many situations additional background-knowledge is required to cope with the requirements of an application. We describe an approach to integrate such general knowledge into the reasoning process in a way that it complements the knowledge contained in the cases. This general knowledge itself is not sufficient to perform any kind of model-based problem solving, but it is required to interpret the available cases appropriately. Background knowledge is expressed by two different kinds of rules that both must be formalized by the knowledge engineer: Completion rules describe how to infer additional features out of known features of an old case or the current query case. Adaptation rules describe how an old case can be adapted to fit the current query. This paper shows how these kinds of rules can be integrated into an object-oriented case representation.

We present an approach to systematically describing case-based reasoning systems bydifferent kinds of criteria. One main requirement was the practical relevance of these criteria and their usability for real-life applications. We report on the results we achieved from a case study carried out in the INRECA1 Esprit project.

We present a novel approach to classification, based on a tight coupling of instancebased learning and a genetic algorithm. In contrast to the usual instance-based learning setting, we do not rely on (parts of) the given training set as the basis of a nearestneighbor classifier, but we try to employ artificially generated instances as concept prototypes. The extremely hard problem of finding an appropriate set of concept prototypes is tackled by a genetic search procedure with the classification accuracy on the given training set as evaluation criterion for the genetic fitness measure. Experiments with artificial datasets show that - due to the ability to find concise and accurate concept descriptions that contain few, but typical instances - this classification approach is considerably robust against noise, untypical training instances and irrelevant attributes. These favorable (theoretical) properties are corroborated using a number of hard real-world classification problems.

This article will discuss a qualitative, topological and robust world-modelling technique with special regard to navigation-tasks for mobile robots operating in unknownenvironments. As a central aspect, the reliability regarding error-tolerance and stability will be emphasized. Benefits and problems involved in exploration, as well as in navigation tasks, are discussed. The proposed method demands very low constraints for the kind and quality of the employed sensors as well as for the kinematic precision of the utilized mobile platform. Hard real-time constraints can be handled due to the low computational complexity. The principal discussions are supported by real-world experiments with the mobile robot

In this paper we describe how explicit models of software or knowledge engineering processes can be used to guide and control the distributed development of complex systems. The paper focuses on techniques which automatically infer dependencies between decisions from a process model and methods which allow to integrate planning and execution steps. Managing dependencies between decisions is a basis for improving the traceability of develop- ment processes. Switching between planning and execution of subprocesses is an inherent need in the development of complex systems. The paper concludes with a description of the CoMo-Kit system which implements the technolo- gies mentioned above and which uses WWW technology to coordinate development processes. An on-line demonstration of the system can be found via the CoMo-Kit homepage: