## Fachbereich Elektrotechnik und Informationstechnik

### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (54)
- Preprint (17)
- Report (8)
- Article (4)
- Habilitation (3)
- Conference Proceeding (1)
- Other (1)

#### Keywords

- Mobilfunk (7)
- Mobilfunk (5)
- Ambient Intelligence (4)
- Model checking (4)
- CDMA (3)
- Elektrotechnik (3)
- MIMO (3)
- Networked Automation Systems (3)
- Netzwerk (3)
- Regelung (3)

- Event-triggered Control of Linear Systems with Application to Embedded Control Systems (2014)
- The objective of this thesis consists in developing systematic event-triggered control designs for specified event generators, which is an important alternative to the traditional periodic sampling control. Sporadic sampling inherently arising in event-triggered control is determined by the event-triggering conditions. This feature invokes the desire of finding new control theory as the traditional sampled-data theory in computer control. Developing controller coupling with the applied event-triggering condition to maximize the control performance is the essence for event-triggered control design. In the design the stability of the control system needs to be ensured with the first priority. Concerning variant control aims they should be clearly incorporated in the design procedures. Considering applications in embedded control systems efficient implementation requires a low complexity of embedded software architectures. The thesis targets at offering such a design to further complete the theory of event-triggered control designs.

- Dynamic Automatic Noisy Speech Recognition System (DANSR) (2014)
- In this thesis we studied and investigated a very common but a long existing noise problem and we provided a solution to this problem. The task is to deal with different types of noise that occur simultaneously and which we call hybrid. Although there are individual solutions for specific types one cannot simply combine them because each solution affects the whole speech. We developed an automatic speech recognition system DANSR ( Dynamic Automatic Noisy Speech Recognition System) for hybrid noisy environmental noise. For this we had to study all of speech starting from the production of sounds until their recognition. Central elements are the feature vectors on which pay much attention. As an additional effect we worked on the production of quantities for psychoacoustic speech elements. The thesis has four parts: 1) The first part we give an introduction. The chapter 2 and 3 give an overview over speech generation and recognition when machines are used. Also noise is considered. 2) In the second part we describe our general system for speech recognition in a noisy environment. This is contained in the chapters 4-10. In chapter 4 we deal with data preparation. Chapter 5 is concerned with very strong noise and its modeling using Poisson distribution. In the chapters 5-8 we deal with parameter based modeling. Chapter 7 is concerned with autoregressive methods in relation to the vocal tract. In the chapters 8 and 9 we discuss linear prediction and its parameters. Chapter 9 is also concerned with quadratic errors, the decomposition into sub-bands and the use of Kalman filters for non-stationary colored noise in chapter 10. There one finds classical approaches as long we have used and modified them. This includes covariance mehods, the method of Burg and others. 3) The third part deals firstly with psychoacoustic questions. We look at quantitative magnitudes that describe them. This has serious consequences for the perception models. For hearing we use different scales and filters. In the center of the chapters 12 and 13 one finds the features and their extraction. The fearures are the only elements that contain information for further use. We consider here Cepstrum features and Mel frequency cepstral coefficients(MFCC), shift invariant local trigonometric transformed (SILTT), linear predictive coefficients (LPC), linear predictive cepstral coefficients (LPCC), perceptual linear predictive (PLP) cepstral coefficients. In chapter 13 we present our extraction methods in DANSR and how they use window techniques And discrete cosine transform (DCT-IV) as well as their inverses. 4) The fourth part considers classification and the ultimate speech recognition. Here we use the hidden Markov model (HMM) for describing the speech process and the Gaussian mixture model (GMM) for the acoustic modelling. For the recognition we use forward algorithm, the Viterbi search and the Baum-Welch algorithm. We also draw the connection to dynamic time warping (DTW). In the rest we show experimental results and conclusions.

- Thermal Modeling and Management of Multi-Core Processors (2014)
- The work presented in this thesis discusses the thermal and power management of multi-core processors (MCPs) with both two dimensional (2D) package and there dimensional (3D) package chips. The power and thermal management/balancing is of increasing concern and is a technological challenge to the MCP development and will be a main performance bottleneck for the development of MCPs. This thesis develops optimal thermal and power management policies for MCPs. The system thermal behavior for both 2D package and 3D package chips is analyzed and mathematical models are developed. Thereafter, the optimal thermal and power management methods are introduced. Nowadays, the chips are generally packed in 2D technique, which means that there is only one layer of dies in the chip. The chip thermal behavior can be described by a 3D heat conduction partial differential equation (PDE). As the target is to balance the thermal behavior and power consumption among the cores, a group of one dimensional (1D) PDEs, which is derived from the developed 3D PDE heat conduction equation, is proposed to describe the thermal behavior of each core. Therefore, the thermal behavior of the MCP is described by a group of 1D PDEs. An optimal controller is designed to manage the power consumption and balance the temperature among the cores based on the proposed 1D model. 3D package is an advanced package technology, which contains at least 2 layers of dies stacked in one chip. Different from 2D package, the cooling system should be installed among the layers to reduce the internal temperature of the chip. In this thesis, the micro-channel liquid cooling system is considered, and the heat transfer character of the micro-channel is analyzed and modeled as an ordinary differential equation (ODE). The dies are discretized to blocks based on the chip layout with each block modeled as a thermal resistance and capacitance (R-C) circuit. Thereafter, the micro-channels are discretized. The thermal behavior of the whole system is modeled as an ODE system. The micro-channel liquid velocity is set according to the workload and the temperature of the dies. Under each velocity, the system can be described as a linear ODE model system and the whole system is a switched linear system. An H-infinity observer is designed to estimate the states. The model predictive control (MPC) method is employed to design the thermal and power management/balancing controller for each submodel. The models and controllers developed in this thesis are verified by simulation experiments via MATLAB. The IBM cell 8 cores processor and water micro-channel cooling system developed by IBM Research in collaboration with EPFL and ETHZ are employed as the experiment objects.

- Investigate the hardware description language Chisel - A case study implementing the Heston model (2013)
- This paper presents a case study comparing the hardware description language „Constructing Hardware in a Scala Embedded Language“(Chisel) to VHDL. For a thorough comparison the Heston Model was implemented, a stochastic model used in financial mathematics to calculate option prices. Metrics like hardware utilization and maximum clock rate were extracted from both resulting designs and compared to each other. The results showed a 30% reduction in code size compared to VHDL, while the resulting circuits had about the same hardware utilization. Using Chisel however proofed to be difficult because of a few features that were not available for this case study.

- Investigate the high-level HDL Chisel (2013)
- Chisel (Constructing Hardware in a Scala embedded language) is a new programming language, which embedded in Scala, used for hardware synthesis. It aims to increase productivity when creating hardware by enabling designers to use features present in higher level programming languages to build complex hardware blocks. In this paper, the most advertised features of Chisel are investigated and compared to their VHDL counterparts, if present. Afterwards, the authors’ opinion if a switch to Chisel is worth considering is presented. Additionally, results from a related case study on Chisel are briefly summarized. The author concludes that, while Chisel has promising features, it is not yet ready for use in the industry.

- Model-Based Cross-Design for Wireless Networked Control Systems (2013)
- This work shall provide a foundation for the cross-design of wireless networked control systems with limited resources. A cross-design methodology is devised, which includes principles for the modeling, analysis, design, and realization of low cost but high performance and intelligent wireless networked control systems. To this end, a framework is developed in which control algorithms and communication protocols are jointly designed, implemented, and optimized taking into consideration the limited communication, computing, memory, and energy resources of the low performance, low power, and low cost wireless nodes used. A special focus of the proposed methodology is on the prediction and minimization of the total energy consumption of the wireless network (i.e. maximization of the lifetime of wireless nodes) under control performance constraints (e.g. stability and robustness) in dynamic environments with uncertainty in resource availability, through the joint (offline/online) adaptation of communication protocol parameters and control algorithm parameters according to the traffic and channel conditions. Appropriate optimization approaches that exploit the structure of the optimization problems to be solved (e.g. linearity, affinity, convexity) and which are based on Linear Matrix Inequalities (LMIs), Dynamic Programming (DP), and Genetic Algorithms (GAs) are investigated. The proposed cross-design approach is evaluated on a testbed consisting of a real lab plant equipped with wireless nodes. Obtained results show the advantages of the proposed cross-design approach compared to standard approaches which are less flexible.

- AXI4-Stream Upsizing/Downsizing Data Width Converters for Hardware-In-the-Loop Simulations (2013)
- Hardware prototyping is an essential part in the hardware design flow. Furthermore, hardware prototyping usually relies on system-level design and hardware-in-the-loop simulations in order to develop, test and evaluate intellectual property cores. One common task in this process consist on interfacing cores with different port specifications. Data width conversion is used to overcome this issue. This work presents two open source hardware cores compliant with AXI4-Stream bus protocol, where each core performs upsizing/downsizing data width conversion.

- 100% Green Computing At The Wrong Location? (2012)
- Modern society relies on convenience services and mobile communication. Cloud computing is the current trend to make data and applications available at any time on every device. Data centers concentrate computation and storage at central locations, while they claim themselves green due to their optimized maintenance and increased energy efﬁciency. The key enabler for this evolution is the microelectronics industry. The trend to power efﬁcient mobile devices has forced this industry to change its design dogma to: ”keep data locally and reduce data communication whenever possible”. Therefore we ask: is cloud computing repeating the aberrations of its enabling industry?

- New Solving Techniques for Property Checking of Arithmetic Data Paths (2012)
- The increasing complexity of modern SoC designs makes tasks of SoC formal verification a lot more complex and challenging. This motivates the research community to develop more robust approaches that enable efficient formal verification for such designs. It is a common scenario to apply a correctness by integration strategy while a SoC design is being verified. This strategy assumes formal verification to be implemented in two major steps. First of all, each module of a SoC is considered and verified separately from the other blocks of the system. At the second step – when the functional correctness is successfully proved for every individual module – the communicational behavior has to be verified between all the modules of the SoC. In industrial applications, SAT/SMT-based interval property checking(IPC) has become widely adopted for SoC verification. Using IPC approaches, a verification engineer is able to afford solving a wide range of important verification problems and proving functional correctness of diverse complex components in a modern SoC design. However, there exist critical parts of a design where formal methods often lack their robustness. State-of-the-art property checkers fail in proving correctness for a data path of an industrial central processing unit (CPU). In particular, arithmetic circuits of a realistic size (32 bits or 64 bits) – especially implementing multiplication algorithms – are well-known examples when SAT/SMT-based formal verification may reach its capacity very fast. In cases like this, formal verification is replaced with simulation-based approaches in practice. Simulation is a good methodology that may assure a high rate of discovered bugs hidden in a SoC design. However, in contrast to formal methods, a simulation-based technique cannot guarantee the absence of errors in a design. Thus, simulation may still miss some so-called corner-case bugs in the design. This may potentially lead to additional and very expensive costs in terms of time, effort, and investments spent for redesigns, refabrications, and reshipments of new chips. The work of this thesis concentrates on studying and developing robust algorithms for solving hard arithmetic decision problems. Such decision problems often originate from a task of RTL property checking for data-path designs. Proving properties of those designs can efficiently be performed by solving SMT decision problems formulated with the quantifier-free logic over fixed-sized bit vectors (QF-BV). This thesis, firstly, proposes an effective algebraic approach based on a Gröbner basis theory that allows to efficiently decide arithmetic problems. Secondly, for the case of custom-designed components, this thesis describes a sophisticated modeling technique which is required to restore all the necessary arithmetic description from these components. Further, this thesis, also, explains how methods from computer algebra and the modeling techniques can be integrated into a common SMT solver. Finally, a new QF-BV SMT solver is introduced.

- AmICA - Design and implementation of a flexible, compact, and low-power node platform (2010)
- Wireless sensor networks are the driving force behind many popular and interdisciplinary research areas, such as environmental monitoring, building automation, healthcare and assisted living applications. Requirements like compactness, high integration of sensors, flexibility, and power efficiency are often very different and cannot be fulfilled by state-of-the-art node platforms at once. In this paper, we present and analyze AmICA: a flexible, compact, easy-to-program, and low-power node platform. Developed from scratch and including a node, a basic communication protocol, and a debugging toolkit, it assists in an user-friendly rapid application development. The general purpose nature of AmICA was evaluated in two practical applications with diametric requirements. Our analysis shows that AmICA nodes are 67% smaller than BTnodes, have five times more sensors than Mica2Dot and consume 72% less energy than the state-of-the-art TelosB mote in sleep mode.