## Fachbereich Elektrotechnik und Informationstechnik

### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (34)
- Preprint (6)
- Report (3)
- Article (2)
- Other (1)

#### Language

- English (46) (remove)

#### Keywords

- Mobilfunk (3)
- Chisel (2)
- Field-programmable gate array (FPGA) (2)
- MIMO (2)
- Mobilfunk (2)
- Model checking (2)
- OFDM (2)
- Verifikation (2)
- AXI4-Stream (1)
- Audio (1)

- Controller Implementation by Communicating Asynchronous Sequential Circuits Generated from a Petri Net Specification of Required Behavior (1999)
- This paper presents a completely systematic design procedure for asynchronous controllers.The initial step is the construction of a signal transition graph (STG, an interpreted Petri net) ofthe dialog between data path and controller: a formal representation without reference to timeor internal states. To implement concurrently operating control structures, and also to reducedesign effort and circuit cost, this STG can be decomposed into overlapping subnets. A univer-sal initial solution is then obtained by algorithmically constructing a primitive flow table fromeach component net. This step links the procedure to classical asynchronous design, in particu-lar to its proven optimization methods, without restricting the set of solutions. In contrast toother approaches, there is no need to extend the original STG intuitively.

- Structural Decomposition of STGs (2015)
- Specification of asynchronous circuit behaviour becomes more complex as the complexity of today’s System-On-a-Chip (SOC) design increases. This also causes the Signal Transition Graphs (STGs) – interpreted Petri nets for the specification of asynchronous circuit behaviour – to become bigger and more complex, which makes it more difficult, sometimes even impossible, to synthesize an asynchronous circuit from an STG with a tool like petrify [CKK+96] or CASCADE [BEW00]. It has, therefore, been suggested to decompose the STG as a first step; this leads to a modular implementation [KWVB03] [KVWB05], which can reduce syn- thesis effort by possibly avoiding state explosion or by allowing the use of library elements. A decomposition approach for STGs was presented in [VW02] [KKT93] [Chu87a]. The decomposition algorithm by Vogler and Wollowski [VW02] is based on that of Chu [Chu87a] but is much more generally applicable than the one in [KKT93] [Chu87a], and its correctness has been proved formally in [VW02]. This dissertation begins with Petri net background described in chapter 2. It starts with a class of Petri nets called a place/transition (P/T) nets. Then STGs, the subclass of P/T nets, is viewed. Background in net decomposition is presented in chapter 3. It begins with the structural decomposition of P/T nets for analysis purposes – liveness and boundedness of the net. Then STG decomposition for synthesis from [VW02] is described. The decomposition method from [VW02] still could be improved to deal with STGs from real applications and to give better decomposition results. Some improvements for [VW02] to improve decomposition result and increase algorithm efficiency are discussed in chapter 4. These improvement ideas are suggested in [KVWB04] and some of them are have been proved formally in [VK04]. The decomposition method from [VW02] is based on net reduction to find an output block component. A large amount of work has to be done to reduce an initial specification until the final component is found. This reduction is not always possible, which causes input initially classified as irrelevant to become relevant input for the component. But under certain conditions (e.g. if structural auto-conflicts turn out to be non-dynamic) some of them could be reclassified as irrelevant. If this is not done, the specifications become unnecessarily large, which intern leads to unnecessarily large implemented circuits. Instead of reduction, a new approach, presented in chapter 5, decomposes the original net into structural components first. An initial output block component is found by composing the structural components. Then, a final output block component is obtained by net reduction. As we cope with the structure of a net most of the time, it would be useful to have a structural abstraction of the net. A structural abstraction algorithm [Kan03] is presented in chapter 6. It can improve the performance in finding an output block component in most of the cases [War05] [Taw04]. Also, the structure net is in most cases smaller than the net itself. This increases the efficiency of the decomposition algorithm because it allows the transitions contained in a node of the structure graph to be contracted at the same time if the structure graph is used as internal representation of the net. Chapter 7 discusses the application of STG decomposition in asynchronous circuit design. Application to speed independent circuits is discussed first. Af- ter that 3D circuits synthesized from extended burst mode (XBM) specifications are discussed. An algorithm for translating STG specifications to XBM specifi- cations was first suggested by [BEW99]. This algorithm first derives the state machine from the STG specification, then translates the state machine to XBM specification. An XBM specification, though it is a state machine, allows some concurrency. These concurrencies can be translated directly, without deriving all of the possible states. An algorithm which directly translates STG to XBM specifications, is presented in chapter 7.3.1. Finally DESI, a tool to decompose STGs and its decomposition results are presented.

- Preprocessing for Property Checking of Sequential Circuits on the Register Transfer Level (2003)
- As the sustained trend towards integrating more and more functionality into systems on a chip can be observed in all fields, their economic realization is a challenge for the chip making industry. This is, however, barely possible today, as the ability to design and verify such complex systems could not keep up with the rapid technological development. Owing to this productivity gap, a design methodology, mainly using pre designed and pre verifying blocks, is mandatory. The availability of such blocks, meeting the highest possible quality standards, is decisive for its success. Cost-effective, this can only be achieved by formal verification on the block-level, namely by checking properties, ranging over finite intervals of time. As this verification approach is based on constructing and solving Boolean equivalence problems, it allows for using backtrack search procedures, such as SAT. Recent improvements of the latter are responsible for its high capacity. Still, the verification of some classes of hardware designs, enjoying regular substructures or complex arithmetic data paths, is difficult and often intractable. For regular designs, this is mainly due to individual treatment of symmetrical parts of the search space by backtrack search procedures used. One approach to tackle these deficiencies, is to exploit the regular structure for problem reduction on the register transfer level (RTL). This work describes a new approach for property checking on the RTL, preserving the problem inherent structure for subsequent reduction. The reduction is based on eliminating symmetrical parts from bitvector functions, and hence, from the search space. Several approaches for symmetry reduction in search problems, based on invariance of a function under permutation of variables, have been previously proposed. Unfortunately, our investigations did not reveal this kind of symmetry in relevant cases. Instead, we propose a reduction based on symmetrical values, as we encounter them much more frequently in our industrial examples. Let \(f\) be a Boolean function. The values \(0\) and \(1\) are symmetrical values for a variable \(x\) in \(f\) iff there is a variable permutation \(\pi\) of the variables of \(f\), fixing \(x\), such that \(f|_{x=0} = \pi(f|_{x=1})\). Then the question whether \(f=1\) holds is independent from this variable, and it can be removed. By iterative application of this approach to all variables of \(f\), they are either all removed, leaving \(f=1\) or \(f=0\) trivially, or there is a variable \(x'\) with no such \(\pi\). The latter leads to the conclusion that \(f=1\) does not hold, as we found a counter-example either with \(x'=0\), or \(x'=1\). Extending this basic idea to vectors of variables, allows to elevate it to the RTL. There, self similarities in the function representation, resulting from the regular structure preserved, can be exploited, and as a consequence, symmetrical bitvector values can be found syntactically. In particular, bitvector term-rewriting techniques, isomorphism procedures for specially manipulated term graphs, and combinations thereof, are proposed. This approach dramatically reduces the computational effort needed for functional verification on the block-level and, in particular, for the important problem class of regular designs. It allows the verification of industrial designs previously intractable. The main contributions of this work are in providing a framework for dealing with bitvector functions algebraically, a concise description of bounded model checking on the register transfer level, as well as new reduction techniques and new approaches for finding and exploiting symmetrical values in bitvector functions.

- Model-Based Cross-Design for Wireless Networked Control Systems (2013)
- This work shall provide a foundation for the cross-design of wireless networked control systems with limited resources. A cross-design methodology is devised, which includes principles for the modeling, analysis, design, and realization of low cost but high performance and intelligent wireless networked control systems. To this end, a framework is developed in which control algorithms and communication protocols are jointly designed, implemented, and optimized taking into consideration the limited communication, computing, memory, and energy resources of the low performance, low power, and low cost wireless nodes used. A special focus of the proposed methodology is on the prediction and minimization of the total energy consumption of the wireless network (i.e. maximization of the lifetime of wireless nodes) under control performance constraints (e.g. stability and robustness) in dynamic environments with uncertainty in resource availability, through the joint (offline/online) adaptation of communication protocol parameters and control algorithm parameters according to the traffic and channel conditions. Appropriate optimization approaches that exploit the structure of the optimization problems to be solved (e.g. linearity, affinity, convexity) and which are based on Linear Matrix Inequalities (LMIs), Dynamic Programming (DP), and Genetic Algorithms (GAs) are investigated. The proposed cross-design approach is evaluated on a testbed consisting of a real lab plant equipped with wireless nodes. Obtained results show the advantages of the proposed cross-design approach compared to standard approaches which are less flexible.

- Model-based fault diagnosis and fault-tolerant control for a nonlinear electro-hydraulic system (2010)
- The work presented in this thesis discusses the model-based fault diagnosis and fault-tolerant control with application to a nonlinear electro-hydraulic system. High performance control with guaranteed safety and reliability for electro-hydraulic systems is a challenging task due to the high nonlinearity and system uncertainties. This thesis developed a diagnosis integrated fault-tolerant control (FTC) strategy for the electro-hydraulic system. In fault free case the nominal controller is in operation for achieving the best performance. If the fault occurs, the controller will be automatically reconfigured based on the fault information provided by the diagnosis system. Fault diagnosis and reconfigurable controller are the key parts for the proposed methodology. The system and sensor faults both are studied in the thesis. Fault diagnosis consists of fault detection and isolation (FDI). A model-base residual generating is realized by calculating the redundant information from the system model and available signal. In this thesis differential-geometric approach is employed, which gives a general formulation of FDI problem and is more compact and transparent among various model-based approaches. The principle of residual construction with differential-geometric method is to find an unobservable distribution. It indicates the existence of a system transformation, with which the unknown system disturbance can be decoupled. With the observability codistribution algorithm the local weak observability of transformed system is ensured. A Fault detection observer for the transformed system can be constructed to generate the residual. This method cannot isolated sensor faults. In the thesis the special decision making logic (DML) is designed based on the individual signal analysis of the residuals to isolate the fault. The reconfigurable controller is designed with the backstepping technique. Backstepping method is a recursive Lyapunov-based approach and can deal with nonlinear systems. Some system variables are considered as ``virtual controls'' during the design procedure. Then the feedback control laws and the associate Lyapunov function can be constructed by following step-by-step routine. For the electro-hydraulic system adaptive backstepping controller is employed for compensate the impact of the unknown external load in the fault free case. As soon as the fault is identified, the controller can be reconfigured according to the new modeling of faulty system. The system fault is modeled as the uncertainty of system and can be tolerated by parameter adaption. The senor fault acts to the system via controller. It can be modeled as parameter uncertainty of controller. All parameters coupled with the faulty measurement are replaced by its approximation. After the reconfiguration the pre-specified control performance can be recovered. FDI integrated FTC based on backstepping technique is implemented successfully on the electro-hydraulic testbed. The on-line robust FDI and controller reconfiguration can be achieved. The tracking performance of the controlled system is guaranteed and the considered faults can be tolerated. But the problem of theoretical robustness analysis for the time delay caused by the fault diagnosis is still open.

- Optical code multiplex schemes as economical upgrade on existing DWDM systems to simplify costly channel monitoring (2001)
- In this thesis a new family of codes for the use in optical high bit rate transmission systems with a direct sequence code division multiple access scheme component was developed and its performance examined. These codes were then used as orthogonal sequences for the coding of the different wavelength channels in a hybrid OCDMA/WDMA system. The overall performance was finally compared to a pure WDMA system. The common codes known up to date have the problem of needing very long sequence lengths in order to accommodate an adequate number of users. Thus, code sequence lengths of 1000 or more were necessary to reach bit error ratios of with only about 10 simultaneous users. However, these sequence lengths are unacceptable if signals with data rates higher than 100 MBit/s are to be transmitted, not to speak about the number of simultaneous users. Starting from the well known optical orthogonal codes (OOC) and under the assumption of synchronization among the participating transmitters - justified for high bit rate WDM transmission systems -, a new code family called ?modified optical orthogonal codes? (MOOC) was developed by minimizing the crosscorrelation products of each two sequences. By this, the number of simultaneous users could be increased by several orders of magnitude compared to the known codes so far. The obtained code sequences were then introduced in numerical simulations of a 80 GBit/s DWDM transmission system with 8 channels, each carrying a 10 GBit/s payload. Usual DWDM systems are featured by enormous efforts to minimize the spectral spacing between the various wavelength channels. These small spacings in combination with the high bit rates lead to very strict demands on the system components like laser diode, filters, multiplexers etc. Continuous channel monitoring and temperature regulations of sensitive components are inevitable, but often cannot prevent drop downs of the bit error ratio due to aging effects or outer influences like mechanical stress. The obtained results show that - very different to the pure WDM system - by orthogonally coding adjacent wavelength channels with the proposed MOOC, the overall system performance gets widely independent from system parameters like input powers, channel spacings and link lengths. Nonlinear effects like XPM that insert interchannel crosstalk are effectively fought. Furthermore, one can entirely dispense with the bandpass filters, thus simplifying the receiver structure, which is especially interesting for broadcast networks. A DWDM system upgraded with the OCDMA subsystem shows a very robust behavior against a variety of influences.

- VMEbus Controller Synthesis by Communicating Asynchronous Sequential Circuits (1994)
- This paper presents the systematic synthesis of a fairly complex digitalcircuit and its CPLD implementation as an assemblage of communicatingasynchronous sequential circuits. The example, a VMEbus controller, waschosen because it has to control concurrent processes and to arbitrateconflicting requests.

- Non-conventional multi-carrier air interface for mobile radio systems (2005)
- The present thesis deals with a novel approach to increase the resource usage in digital communications. In digital communication systems, each information bearing data symbol is associated to a waveform which is transmitted over a physical medium. The time or frequency separations among the waveforms associated to the information data have always been chosen to avoid or limit the interference among them. By doing so, n the presence of a distortionless ideal channel, a single receive waveform is affected as little as possible by the presence of the other waveforms. The conditions necessary to meet the absence of any interference among the waveforms are well known and consist of a relationship between the minimum time separation among the waveforms and their bandwidth occupation or, equivalently, the minimum frequency separation and their time occupation. These conditions are referred to as Nyquist assumptions. The key idea of this work is to relax the Nyquist assumptions and to transmit with a time and/or frequency separation between the waveforms smaller than the minimum required to avoid interference. The reduction of the time and/or frequency separation generates not only an increment of the resource usage, but also a degradation in the quality of the received data. Therefore, to maintain a certain quality in the received signal, we have to increase the amount of transmitted power. We investigate the trade-off between the increment of the resource usage and the correspondent performance degradation in three different cases. The first case is the single carrier case in which all waveforms have the same spectrum, but have different temporal locations. The second one is the multi carrier case in which each waveform has its distinct spectrum and occupies all the available time. Finally, the hybrid case when each waveform has its unique time and frequency location. These different cases are framed within the general system modelling developed in the thesis so that they can be easily compared. We evaluate the potential of the key idea of the thesis by choosing a set of four possible waveforms with different characteristics. By doing so, we study the influence of the waveform characteristics in the three system configurations. We propose an interpretation of the results by modifying the well-known Shannon capacity formula and by explicitly expressing its dependency on the increment of resource usage and on the performance degradation. The results are very promising. We show that both in the case of a single carrier system with a time limited waveform and in the case of a multi-carrier system with a frequency limited waveform, the reduction of the time or frequency separation, respectively, has a positive effect on the channel capacity. The latter, depending on the actual SNR, can double or increase even more significantly.

- A Gravitational Task Model for Target Sensitive Real-Time Applications (2011)
- For many years real-time task models have focused the timing constraints on execution windows defined by earliest start times and deadlines for feasibility. However, the utility of some application may vary among scenarios which yield correct behavior, and maximizing this utility improves the resource utilization. For example, target sensitive applications have a target point where execution results in maximized utility, and an execution window for feasibility. Execution around this point and within the execution window is allowed, albeit at lower utility. The intensity of the utility decay accounts for the importance of the application. Examples of such applications include multimedia and control; multimedia application are very popular nowadays and control applications are present in every automated system. In this thesis, we present a novel real-time task model which provides for easy abstractions to express the timing constraints of target sensitive RT applications: the gravitational task model. This model uses a simple gravity pendulum (or bob pendulum) system as a visualization model for trade-offs among target sensitive RT applications. We consider jobs as objects in a pendulum system, and the target points as the central point. Then, the equilibrium state of the physical problem is equivalent to the best compromise among jobs with conflicting targets. Analogies with well-known systems are helpful to fill in the gap between application requirements and theoretical abstractions used in task models. For instance, the so-called nature algorithms use key elements of physical processes to form the basis of an optimization algorithm. Examples include the knapsack problem, traveling salesman problem, ant colony optimization, and simulated annealing. We also present a few scheduling algorithms designed for the gravitational task model which fulfill the requirements for on-line adaptivity. The scheduling of target sensitive RT applications must account for timing constraints, and the trade-off among tasks with conflicting targets. Our proposed scheduling algorithms use the equilibrium state concept to order the execution sequence of jobs, and compute the deviation of jobs from their target points for increased system utility. The execution sequence of jobs in the schedule has a significant impact on the equilibrium of jobs, and dominates the complexity of the problem --- the optimum solution is NP-hard. We show the efficacy of our approach through simulations results and 3 target sensitive RT applications enhanced with the gravitational task model.

- Contributions to increase the power efficiency of OFDM communications (2011)
- This thesis has the goal to propose measures which allow an increase of the power efficiency of OFDM transmission systems. As compared to OFDM transmission over AWGN channels, OFDM transmission over frequency selective radio channels requires a significantly larger transmit power in order to achieve a certain transmission quality. It is well known that this detrimental impact of frequency selectivity can be combated by frequency diversity. We revisit and further investigate an approach to frequency diversity based on the spreading of subsets of the data elements over corresponding subsets of the OFDM subcarriers and term this approach Partial Data Spreading (PDS). The size of said subsets, which we designate as spreading factor, is a design parameter of PDS, and by properly choosing , depending on the system designer's requirements, an adequate compromise between a good system performance and a low complexity can be found. We show how PDS can be combined with ML, MMSE and ZF data detection, and it is recognized that MMSE data detection offers a good compromise between performance and complexity. After having presented the utilization of PDS in OFDM transmission without FEC encoding, we also show that PDS readily lends itself for FEC encoded OFDM transmission. We display that in this case the system performance can be significantly enhanced by specific schemes of interleaving and utilization of reliabiliy information developed in the thesis. A severe problem of OFDM transmission is the large Peak-to-Average-Power Ratio (PAPR) of the OFDM symbols, which hampers the application of power efficient transmit amplifiers. Our investigations reveal that PDS inherently reduces the PAPR. Another approch to PAPR reduction is the well known scheme Selective Data Mapping (SDM). In the thesis it is shown that PDS can be beneficially combined with SDM to the scheme PDS-SDM with a view to jointly exploit the PAPR reduction potentials of both schemes. However, even when such a PAPR reduction is achieved, the amplitude maximum of the resulting OFDM symbols is not constant, but depends on the data content. This entails the disadvantage that the power amplifier cannot be designed, with a view to achieve a high power efficiency, for a fixed amplitude maximum, what would be desirable. In order to overcome this problem, we propose the scheme Optimum Clipping (OC), in which we obtain the desired fixed amplitude maximum by a specific combination of the measures clipping, filtering and rescaling. In OFDM transmission a certain number of OFDM subcarriers have to be sacrificed for pilot transmission in order to enable channel estimation in the receiver. For a given energy of the OFDM symbols, the question arises in which way this energy should be subdivided among the pilots and the data carrying OFDM subcarriers. If a large portion of the available transmit energy goes to the pilots, then the quality of channel estimation is good, however, the data detection performs poor. Data detection also performs poor if the energy provided for the pilots is too small, because then the channel estimate indispensable for data detection is not accurate enough. We present a scheme how to assign the energy to pilot and data OFDM subcarriers in an optimum way which minimizes the symbol error probability as the ultimate quality measure of the transmission. The major part of the thesis is dedicated to point-to-point OFDM transmission systems. Towards the end of the thesis we show that the PDS can be also applied to multipoint-to-point OFDM transmission systems encountered for instance in the uplinks of mobile radio systems.