## 90B10 Network models, deterministic

### Filtern

#### Schlagworte

- inverse optimization (1)
- matroid flows (1)
- monotropic programming (1)
- network flows (1)
- tensions (1)

- On Inverse Network Problems and their Generalizations (2009)
- In the context of inverse optimization, inverse versions of maximum flow and minimum cost flow problems have thoroughly been investigated. In these network flow problems there are two important problem parameters: flow capacities of the arcs and costs incurred by sending a unit flow on these arcs. Capacity changes for maximum flow problems and cost changes for minimum cost flow problems have been studied under several distance measures such as rectilinear, Chebyshev, and Hamming distances. This thesis also deals with inverse network flow problems and their counterparts tension problems under the aforementioned distance measures. The major goals are to enrich the inverse optimization theory by introducing new inverse network problems that have not yet been treated in the literature, and to extend the well-known combinatorial results of inverse network flows for more general classes of problems with inherent combinatorial properties such as matroid flows on regular matroids and monotropic programming. To accomplish the first objective, the inverse maximum flow problem under Chebyshev norm is analyzed and the capacity inverse minimum cost flow problem, in which only arc capacities are perturbed, is introduced. In this way, it is attempted to close the gap between the capacity perturbing inverse network problems and the cost perturbing ones. The foremost purpose of studying inverse tension problems on networks is to achieve a well-established generalization of the inverse network problems. Since tensions are duals of network flows, carrying the theoretical results of network flows over to tensions follows quite intuitively. Using this intuitive link between network flows and tensions, a generalization to matroid flows and monotropic programs is built gradually up.