## 76S05 Flows in porous media; filtration; seepage

### Refine

#### Document Type

- Doctoral Thesis (4)
- Preprint (2)
- Report (1)
- Study Thesis (1)

#### Keywords

- Filtergesetz (2)
- Navier-Stokes-Gleichung (2)
- Poröser Stoff (2)
- interface problem (2)
- porous media (2)
- Biot Poroelastizitätgleichung (1)
- Carreau law (1)
- Elliptic-parabolic equation (1)
- Filtration (1)
- Finite-Volumen-Methode (1)

We consider a Darcy flow model with saturation-pressure relation extended
with a dynamic term, namely, the time derivative of the saturation.
This model was proposed in works of J.Hulshof and J.R.King (1998), S.M.Hassanizadeh and W.G.Gray (1993),
F.Stauffer (1978).
We restrict ourself to one spatial dimension and strictly positive
initial saturation. For this case we transform the initial-boundary value
problem into combination of elliptic boundary-value problem and initial
value problem for abstract Ordinary Differential Equation. This splitting
is rather helpful both for theoretical aspects and numerical methods.

Gegenstand dieser Arbeit ist die Entwicklung eines Wärmetransportmodells für tiefe geothermische (hydrothermale) Reservoire. Existenz- und Eindeutigkeitsaussagen bezüglich einer schwachen Lösung des vorgestellten Modells werden getätigt. Weiterhin wird ein Verfahren zur Approximation dieser Lösung basierend auf einem linearen Galerkin-Schema dargelegt, wobei sowohl die Konvergenz nachgewiesen als auch eine Konvergenzrate erarbeitet werden.

In this thesis, the coupling of the Stokes equations and the Biot poroelasticity equations for fluid flow normal to porous media is investigated. For that purpose, the transmission conditions across the interfaces between the fluid regions and the porous domain are derived. A proper algorithm is formulated and numerical examples are presented. First, the transmission conditions for the coupling of various physical phenomena are reviewed. For the coupling of free flow with porous media, it has to be distinguished whether the fluid flows tangentially or perpendicularly to the porous medium. This plays an essential role for the formulation of the transmission conditions. In the thesis, the transmission conditions for the coupling of the Stokes equations and the Biot poroelasticity equations for fluid flow normal to the porous medium in one and three dimensions are derived. With these conditions, the continuous fully coupled system of equations in one and three dimensions is formulated. In the one dimensional case the extreme cases, i.e. fluid-fluid interface and fluid impermeable solid interface, are considered. Two chapters of the thesis are devoted to the discretisation of the fully coupled Biot-Stokes system for matching and non-matching grids, respectively. Therefor, operators are introduced that map the internal and boundary variables to the respective domains via Stokes equations, Biot equations and the transmission conditions. The matrix representation of some of these operators is shown. For the non-matching case, a cell-centred grid in the fluid region and a staggered grid in the porous domain are used. Hence, the discretisation is more difficult, since an additional grid on the interface has to be introduced. Corresponding matching functions are needed to transfer the values properly from one domain to the other across the interface. In the end, the iterative solution procedure for the Biot-Stokes system on non-matching grids is presented. For this purpose, a short review of domain decomposition methods is given, which are often the methods of choice for such coupled problems. The iterative solution algorithm is presented, including details like stopping criteria, choice and computation of parameters, formulae for non-dimensionalisation, software and so on. Finally, numerical results for steady state examples, depth filtration and cake filtration examples are presented.

In this thesis, the quasi-static Biot poroelasticity system in bounded multilayered domains in one and three dimensions is studied. In more detail, in the one-dimensional case, a finite volume discretization for the Biot system with discontinuous coefficients is derived. The discretization results in a difference scheme with harmonic averaging of the coefficients. Detailed theoretical analysis of the obtained discrete model is performed. Error estimates, which establish convergence rates for both primary as well as flux unknowns are derived. Besides, modified and more accurate discretizations, which can be applied when the interface position coincides with a grid node, are obtained. These discretizations yield second order convergence of the fluxes of the problem. Finally, the solver for the solution of the produced system of linear equations is developed and extensively tested. A number of numerical experiments, which confirm the theoretical considerations are performed. In the three-dimensional case, the finite volume discretization of the system involves construction of special interpolating polynomials in the dual volumes. These polynomials are derived so that they satisfy the same continuity conditions across the interface, as the original system of PDEs. This technique allows to obtain such a difference scheme, which provides accurate computation of the primary as well as of the flux unknowns, including the points adjacent to the interface. Numerical experiments, based on the obtained discretization, show second order convergence for auxiliary problems with known analytical solutions. A multigrid solver, which incorporates the features of the discrete model, is developed in order to solve efficiently the linear system, produced by the finite volume discretization of the three-dimensional problem. The crucial point is to derive problem-dependent restriction and prolongation operators. Such operators are a well-known remedy for the scalar PDEs with discontinuous coefficients. Here, these operators are derived for the system of PDEs, taking into account interdependence of different unknowns within the system. In the derivation, the interpolating polynomials from the finite volume discretization are employed again, linking thus the discretization and the solution processes. The developed multigrid solver is tested on several model problems. Numerical experiments show that, due to the proper problem-dependent intergrid transfer, the multigrid solver is robust with respect to the discontinuities of the coefficients of the system. In the end, the poroelasticity system with discontinuous coefficients is used to model a real problem. The Biot model, describing this problem, is treated numerically, i.e., discretized by the developed finite volume techniques and then solved by the constructed multigrid solver. Physical characteristics of the process, such as displacement of the skeleton, pressure of the fluid, components of the stress tensor, are calculated and then presented at certain cross-sections.

The aim of the thesis is the numerical investigation of saturated, stationary, incompressible Newtonian flow in porous media when inertia is not negligible. We focus our attention to the Navier-Stokes system with two pressures derived by two-scale homogenization. The thesis is subdivided into five Chapters. After the introductory remarks on porous media, filtration laws and upscaling methods, the first chapter is closed by stating the basic terminology and mathematical fundamentals. In Chapter 2, we start by formulating the Navier-Stokes equations on a periodic porous medium. By two-scale expansions of the velocity and pressure, we formally derive the Navier-Stokes system with two pressures. For the sake of completeness, known existence and uniqueness results are repeated and a convergence proof is given. Finally, we consider Stokes and Navier-Stokes systems with two pressures with respect to their relation to Darcy's law. Chapter 3 and Chapter 4 are devoted to the numerical solution of the nonlinear two pressure system. Therefore, we follow two approaches. The first approach which is developed in Chapter 3 is based on a splitting of the Navier-Stokes system with two pressures into micro and macro problems. The splitting is achieved by Taylor expanding the permeability function or by discretely computing the permeability function. The problems to be solved are a series of Stokes and Navier-Stokes problems on the periodicity cell. The Stokes problems are solved by an Uzawa conjugate gradient method. The Navier-Stokes equations are linearized by a least-squares conjugate gradient method, which leads to the solution of a sequence of Stokes problems. The macro problem consists of solving a nonlinear uniformly elliptic equation of second order. The least-squares linearization is applied to the macro problem leading to a sequence of Poisson problems. All equations will be discretized by finite elements. Numerical results are presented at the end of Chapter 3. The second approach presented in Chapter 4 relies on the variational formulation in a certain Hilbert space setting of the Navier-Stokes system with two pressures. The nonlinear problem is again linearized by the least-squares conjugate gradient method. We obtain a sequence of Stokes systems with two pressures. For the latter systems, we propose a fast solution method which relies on pre-computing Stokes systems on the periodicity cell for finite element basis functions acting as right hand sides. Finally, numerical results are discussed. In Chapter 5 we are concerned with modeling and simulation of the pressing section of a paper machine. We state a two-dimensional model of a press nip which takes into account elasticity and flow phenomena. Nonlinear filtration laws are incorporated into the flow model. We present a numerical solution algorithm and the chapter is closed by a numerical investigation of the model with special focus on inertia effects.

Porous media flow of polymers with Carreau law viscosities and their application to enhanced oil recovery (EOR) is considered. Applying the homogenization method leads to a nonlinear two-scale problem. In case of a small difference between the Carreau and the Newtonian case an asymptotic expansion based on the small deviation of the viscosity from the Newtonian case is introduced. For uni-directional pressure gradients, which is a reasonable assumption in applications like EOR, auxiliary problems to decouple the micro- from the macrovariables are derived. The microscopic flow field obtained by the proposed approach is compared to the solution of the two-scale problem. Finite element calculations for an isotropic and an anisotropic pore cell geometries are used to validate the accuracy and speed-up of the proposed approach. The order of accuracy has been studied by performing the simulations up to the third order expansion for the isotropic geometry.

The present thesis deals with coupled steady state laminar flows of isothermal incompressible viscous Newtonian fluids in plain and in porous media. The flow in the pure fluid region is usually described by the (Navier-)Stokes system of equations. The most popular models for the flow in the porous media are those suggested by Darcy and by Brinkman. Interface conditions, proposed in the mathematical literature for coupling Darcy and Navier-Stokes equations, are shortly reviewed in the thesis. The coupling of Navier-Stokes and Brinkman equations in the literature is based on the so called continuous stress tensor interface conditions. One of the main tasks of this thesis is to investigate another type of interface conditions, namely, the recently suggested stress tensor jump interface conditions. The mathematical models based on these interface conditions were not carefully investigated from the mathematical point of view, and also their validity was a subject of discussions. The considerations within this thesis are a step toward better understanding of these interface conditions. Several aspects of the numerical simulations of such coupled flows are considered: -the choice of proper interface conditions between the plain and porous media -analysis of the well-posedness of the arising systems of partial differential equations; -developing numerical algorithm for the stress tensor jump interface conditions, coupling Navier-Stokes equations in the pure liquid media with the Navier-Stokes-Brinkman equations in the porous media; -validation of the macroscale mathematical models on the base of a comparison with the results from a direct numerical simulation of model representative problems, allowing for grid resolution of the pore level geometry; -developing software and performing numerical simulation of 3-D industrial flows, namely of oil flows through car filters.

In this report we treat an optimization task, which should make the choice of nonwoven for making diapers faster. A mathematical model for the liquid transport in nonwoven is developed. The main attention is focussed on the handling of fully and partially saturated zones, which leads to a parabolic-elliptic problem. Finite-difference schemes are proposed for numerical solving of the differential problem. Paralle algorithms are considered and results of numerical experiments are given.