## 65M06 Finite difference methods

In this thesis, the quasi-static Biot poroelasticity system in bounded multilayered domains in one and three dimensions is studied. In more detail, in the one-dimensional case, a finite volume discretization for the Biot system with discontinuous coefficients is derived. The discretization results in a difference scheme with harmonic averaging of the coefficients. Detailed theoretical analysis of the obtained discrete model is performed. Error estimates, which establish convergence rates for both primary as well as flux unknowns are derived. Besides, modified and more accurate discretizations, which can be applied when the interface position coincides with a grid node, are obtained. These discretizations yield second order convergence of the fluxes of the problem. Finally, the solver for the solution of the produced system of linear equations is developed and extensively tested. A number of numerical experiments, which confirm the theoretical considerations are performed. In the three-dimensional case, the finite volume discretization of the system involves construction of special interpolating polynomials in the dual volumes. These polynomials are derived so that they satisfy the same continuity conditions across the interface, as the original system of PDEs. This technique allows to obtain such a difference scheme, which provides accurate computation of the primary as well as of the flux unknowns, including the points adjacent to the interface. Numerical experiments, based on the obtained discretization, show second order convergence for auxiliary problems with known analytical solutions. A multigrid solver, which incorporates the features of the discrete model, is developed in order to solve efficiently the linear system, produced by the finite volume discretization of the three-dimensional problem. The crucial point is to derive problem-dependent restriction and prolongation operators. Such operators are a well-known remedy for the scalar PDEs with discontinuous coefficients. Here, these operators are derived for the system of PDEs, taking into account interdependence of different unknowns within the system. In the derivation, the interpolating polynomials from the finite volume discretization are employed again, linking thus the discretization and the solution processes. The developed multigrid solver is tested on several model problems. Numerical experiments show that, due to the proper problem-dependent intergrid transfer, the multigrid solver is robust with respect to the discontinuities of the coefficients of the system. In the end, the poroelasticity system with discontinuous coefficients is used to model a real problem. The Biot model, describing this problem, is treated numerically, i.e., discretized by the developed finite volume techniques and then solved by the constructed multigrid solver. Physical characteristics of the process, such as displacement of the skeleton, pressure of the fluid, components of the stress tensor, are calculated and then presented at certain cross-sections.

In this report we treat an optimization task, which should make the choice of nonwoven for making diapers faster. A mathematical model for the liquid transport in nonwoven is developed. The main attention is focussed on the handling of fully and partially saturated zones, which leads to a parabolic-elliptic problem. Finite-difference schemes are proposed for numerical solving of the differential problem. Paralle algorithms are considered and results of numerical experiments are given.