## 60G12 General second-order processes

### Refine

- Sudakov's typical marginals, random linear functionals and a conditional central limit theorem (1997)
- V.N. Sudakov [Sud78] proved that the one-dimensional marginals of a highdimensional second order measure are close to each other in most directions. Extending this and a related result in the context of projection pursuit of P. Diaconis and D. Freedman [Dia84], we give for a probability measure P and a random (a.s.) linear functional F on a Hilbert space simple sufficient conditions under which most of the one-dimensional images of P under F are close to their canonical mixture which turns out to be almost a mixed normal distribution. Using the concept of approximate conditioning we deduce a conditional central limit theorem (theorem 3) for random averages of triangular arrays of random variables which satisfy only fairly weak asymptotic orthogonality conditions.