## 60-XX PROBABILITY THEORY AND STOCHASTIC PROCESSES (For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX)

- Linear diffusions conditioned on long-term survival (2016)
- We investigate the long-term behaviour of diffusions on the non-negative real numbers under killing at some random time. Killing can occur at zero as well as in the interior of the state space. The diffusion follows a stochastic differential equation driven by a Brownian motion. The diffusions we are working with will almost surely be killed. In large parts of this thesis we only assume the drift coefficient to be continuous. Further, we suppose that zero is regular and that infinity is natural. We condition the diffusion on survival up to time t and let t tend to infinity looking for a limiting behaviour.

- Advantage of Filtering for Portfolio Optimization in Financial Markets with Partial Information (2016)
- In a financial market we consider three types of investors trading with a finite time horizon with access to a bank account as well as multliple stocks: the fully informed investor, the partially informed investor whose only source of information are the stock prices and an investor who does not use this infor- mation. The drift is modeled either as following linear Gaussian dynamics or as being a continuous time Markov chain with finite state space. The optimization problem is to maximize expected utility of terminal wealth. The case of partial information is based on the use of filtering techniques. Conditions to ensure boundedness of the expected value of the filters are developed, in the Markov case also for positivity. For the Markov modulated drift, boundedness of the expected value of the filter relates strongly to port- folio optimization: effects are studied and quantified. The derivation of an equivalent, less dimensional market is presented next. It is a type of Mutual Fund Theorem that is shown here. Gains and losses eminating from the use of filtering are then discussed in detail for different market parameters: For infrequent trading we find that both filters need to comply with the boundedness conditions to be an advan- tage for the investor. Losses are minimal in case the filters are advantageous. At an increasing number of stocks, again boundedness conditions need to be met. Losses in this case depend strongly on the added stocks. The relation of boundedness and portfolio optimization in the Markov model leads here to increasing losses for the investor if the boundedness condition is to hold for all numbers of stocks. In the Markov case, the losses for different numbers of states are negligible in case more states are assumed then were originally present. Assuming less states leads to high losses. Again for the Markov model, a simplification of the complex optimal trading strategy for power utility in the partial information setting is shown to cause only minor losses. If the market parameters are such that shortselling and borrowing constraints are in effect, these constraints may lead to big losses depending on how much effect the constraints have. They can though also be an advantage for the investor in case the expected value of the filters does not meet the conditions for boundedness. All results are implemented and illustrated with the corresponding numerical findings.

- Portfoliooptimierung im Binomialmodell (2014)
- Die Dissertation "Portfoliooptimierung im Binomialmodell" befasst sich mit der Frage, inwieweit das Problem der optimalen Portfolioauswahl im Binomialmodell lösbar ist bzw. inwieweit die Ergebnisse auf das stetige Modell übertragbar sind. Dabei werden neben dem klassischen Modell ohne Kosten und ohne Veränderung der Marktsituation auch Modellerweiterungen untersucht.