## 49-XX CALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION [See also 34H05, 34K35, 65Kxx, 90Cxx, 93-XX]

### Filtern

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (3) (entfernen)

#### Dokumenttyp

- Dissertation (2)
- Preprint (1)

#### Schlagworte

- B-Spline (1)
- Beam models (1)
- Elasticity (1)
- Homogenization (1)
- Isogeometrische Analyse (1)
- NURBS (1)
- Optimale Kontrolle (1)
- Optimization (1)
- Partial Differential Equations (1)
- Shape optimization, gradient based optimization, adjoint method (1)

- Isogeometric finite element methods for shape optimization (2015)
- In this thesis we develop a shape optimization framework for isogeometric analysis in the optimize first–discretize then setting. For the discretization we use isogeometric analysis (iga) to solve the state equation, and search optimal designs in a space of admissible b-spline or nurbs combinations. Thus a quite general class of functions for representing optimal shapes is available. For the gradient-descent method, the shape derivatives indicate both stopping criteria and search directions and are determined isogeometrically. The numerical treatment requires solvers for partial differential equations and optimization methods, which introduces numerical errors. The tight connection between iga and geometry representation offers new ways of refining the geometry and analysis discretization by the same means. Therefore, our main concern is to develop the optimize first framework for isogeometric shape optimization as ground work for both implementation and an error analysis. Numerical examples show that this ansatz is practical and case studies indicate that it allows local refinement.

- Modeling and design optimization of textile-like materials via homogenization and one-dimensional models of elasticity (2015)
- The work consists of two parts. In the first part an optimization problem of structures of linear elastic material with contact modeled by Robin-type boundary conditions is considered. The structures model textile-like materials and possess certain quasiperiodicity properties. The homogenization method is used to represent the structures by homogeneous elastic bodies and is essential for formulations of the effective stress and Poisson's ratio optimization problems. At the micro-level, the classical one-dimensional Euler-Bernoulli beam model extended with jump conditions at contact interfaces is used. The stress optimization problem is of a PDE-constrained optimization type, and the adjoint approach is exploited. Several numerical results are provided. In the second part a non-linear model for simulation of textiles is proposed. The yarns are modeled by hyperelastic law and have no bending stiffness. The friction is modeled by the Capstan equation. The model is formulated as a problem with the rate-independent dissipation, and the basic continuity and convexity properties are investigated. The part ends with numerical experiments and a comparison of the results to a real measurement.

- Minimization and Parameter Estimation for Seminorm Regularization Models with I-Divergence Constraints (2012)
- This papers deals with the minimization of seminorms \(\|L\cdot\|\) on \(\mathbb R^n\) under the constraint of a bounded I-divergence \(D(b,H\cdot)\). The I-divergence is also known as Kullback-Leibler divergence and appears in many models in imaging science, in particular when dealing with Poisson data. Typically, \(H\) represents here, e.g., a linear blur operator and \(L\) is some discrete derivative operator. Our preference for the constrained approach over the corresponding penalized version is based on the fact that the I-divergence of data corrupted, e.g., by Poisson noise or multiplicative Gamma noise can be estimated by statistical methods. Our minimization technique rests upon relations between constrained and penalized convex problems and resembles the idea of Morozov's discrepancy principle. More precisely, we propose first-order primal-dual algorithms which reduce the problem to the solution of certain proximal minimization problems in each iteration step. The most interesting of these proximal minimization problems is an I-divergence constrained least squares problem. We solve this problem by connecting it to the corresponding I-divergence penalized least squares problem with an appropriately chosen regularization parameter. Therefore, our algorithm produces not only a sequence of vectors which converges to a minimizer of the constrained problem but also a sequence of parameters which convergences to a regularization parameter so that the penalized problem has the same solution as our constrained one. In other words, the solution of this penalized problem fulfills the I-divergence constraint. We provide the proofs which are necessary to understand our approach and demonstrate the performance of our algorithms for different image restoration examples.