## 45L05 Theoretical approximation of solutions (For numerical analysis, see 65Rxx)

### Refine

#### Keywords

- Regularization Wavelets and Multiresolution (1997)
- Many problems arising in (geo)physics and technology can be formulated as compact operator equations of the first kind \(A F = G\). Due to the ill-posedness of the equation a variety of regularization methods are in discussion for an approximate solution, where particular emphasize must be put on balancing the data and the approximation error. In doing so one is interested in optimal parameter choice strategies. In this paper our interest lies in an efficient algorithmic realization of a special class of regularization methods. More precisely, we implement regularization methods based on filtered singular value decomposition as a wavelet analysis. This enables us to perform, e.g., Tikhonov-Philips regularization as multiresolution. In other words, we are able to pass over from one regularized solution to another one by adding or subtracting so-called detail information in terms of wavelets. It is shown that regularization wavelets as proposed here are efficiently applicable to a future problem in satellite geodesy, viz. satellite gravity gradiometry.

- A discrepancy principle for Tikhonov regularization with approximately specified data (1999)
- Many discrepancy principles are known for choosing the parameter \(\alpha\) in the regularized operator equation \((T^*T+ \alpha I)x_\alpha^\delta = T^*y^\delta\), \(||y-y^d||\leq \delta\), in order to approximate the minimal norm least-squares solution of the operator equation \(Tx=y\). In this paper we consider a class of discrepancy principles for choosing the regularization parameter when \(T^*T\) and \(T^*y^\delta\) are approximated by \(A_n\) and \(z_n^\delta\) respectively with \(A_n\) not necessarily self - adjoint. Thisprocedure generalizes the work of Engl and Neubauer (1985),and particular cases of the results are applicable to the regularized projection method as well as to a degenerate kernel method considered by Groetsch (1990).