## 42C40 Wavelets and other special systems

### Refine

#### Year of publication

#### Document Type

- Preprint (12)
- Doctoral Thesis (3)
- Report (3)
- Diploma Thesis (1)

#### Keywords

- Wavelet (10)
- Mehrskalenanalyse (9)
- Inverses Problem (4)
- Approximation (3)
- Gravitationsfeld (3)
- Regularisierung (3)
- Vektorwavelets (3)
- Biot-Savart Operator (2)
- Biot-Savart operator (2)
- CHAMP (2)

The interest of the exploration of new hydrocarbon fields as well as deep geothermal reservoirs is permanently growing. The analysis of seismic data specific for such exploration projects is very complex and requires the deep knowledge in geology, geophysics, petrology, etc from interpreters, as well as the ability of advanced tools that are able to recover some particular properties. There again the existing wavelet techniques have a huge success in signal processing, data compression, noise reduction, etc. They enable to break complicate functions into many simple pieces at different scales and positions that makes detection and interpretation of local events significantly easier.
In this thesis mathematical methods and tools are presented which are applicable to the seismic data postprocessing in regions with non-smooth boundaries. We provide wavelet techniques that relate to the solutions of the Helmholtz equation. As application we are interested in seismic data analysis. A similar idea to construct wavelet functions from the limit and jump relations of the layer potentials was first suggested by Freeden and his Geomathematics Group.
The particular difficulty in such approaches is the formulation of limit and
jump relations for surfaces used in seismic data processing, i.e., non-smooth
surfaces in various topologies (for example, uniform and
quadratic). The essential idea is to replace the concept of parallel surfaces known for a smooth regular surface by certain appropriate substitutes for non-smooth surfaces.
By using the jump and limit relations formulated for regular surfaces, Helmholtz wavelets can be introduced that recursively approximate functions on surfaces with edges and corners. The exceptional point is that the construction of wavelets allows the efficient implementation in form of
a tree algorithm for the fast numerical computation of functions on the boundary.
In order to demonstrate the
applicability of the Helmholtz FWT, we study a seismic image obtained by the reverse time migration which is based on a finite-difference implementation. In fact, regarding the requirements of such migration algorithms in filtering and denoising the wavelet decomposition is successfully applied to this image for the attenuation of low-frequency
artifacts and noise. Essential feature is the space localization property of
Helmholtz wavelets which numerically enables to discuss the velocity field in
pointwise dependence. Moreover, the multiscale analysis leads us to reveal additional geological information from optical features.

We provide a space domain oriented separation of magnetic fields into parts generated by sources in the exterior and sources in the interior of a given sphere. The separation itself is well-known in geomagnetic modeling, usually in terms of a spherical harmonic analysis or a wavelet analysis that is spherical harmonic based. However, it can also be regarded as a modification of the Helmholtz decomposition for which we derive integral representations with explicitly known convolution kernels. Regularizing these singular kernels allows a multiscale representation of the magnetic field with locally supported wavelets. This representation is applied to a set of CHAMP data for crustal field modeling.

Using a stereographical projection to the plane we construct an O(N log(N)) algorithm to approximate scattered data in N points by orthogonal, compactly supported wavelets on the surface of a 2-sphere or a local subset of it. In fact, the sphere is not treated all at once, but is split into subdomains whose results are combined afterwards. After choosing the center of the area of interest the scattered data points are mapped from the sphere to the tangential plane through that point. By combining a k-nearest neighbor search algorithm and the two dimensional fast wavelet transform a fast approximation of the data is computed and mapped back to the sphere. The algorithm is tested with nearly 1 million data points and yields an approximation with 0.35% relative errors in roughly 2 minutes on a standard computer using our MATLAB implementation. The method is very flexible and allows the application of the full range of two dimensional wavelets.

As a first approximation the Earth is a sphere; as a second approximation it may be considered an ellipsoid of revolution. The deviations of the actual Earth's gravity field from the ellipsoidal 'normal' field are so small that they can be understood to be linear. The splitting of the Earth's gravity field into a 'normal' and a remaining small 'disturbing' field considerably simplifies the problem of its determination. Under the assumption of an ellipsoidal Earth model high observational accuracy is achievable only if the deviation (deflection of the vertical) of the physical plumb line, to which measurements refer, from the ellipsoidal normal is not ignored. Hence, the determination of the disturbing potential from known deflections of the vertical is a central problem of physical geodesy. In this paper we propose a new, well-promising method for modelling the disturbing potential locally from the deflections of the vertical. Essential tools are integral formulae on the sphere based on Green's function of the Beltrami operator. The determination of the disturbing potential from deflections of the vertical is formulated as a multiscale procedure involving scale-dependent regularized versions of the surface gradient of the Green function. The modelling process is based on a multiscale framework by use of locally supported surface curl-free vector wavelets.

This paper presents a method for approximating spherical functions from discrete data of a block-wise grid structure. The essential ingredients of the approach are scaling and wavelet functions within a biorthogonalisation process generated by locally supported zonal kernel functions. In consequence, geophysically and geodetically relevant problems involving rotation-invariant pseudodifferential operators become attackable. A multiresolution analysis is formulated enabling a fast wavelet transform similar to the algorithms known from one-dimensional Euclidean theory.

The following three papers present recent developments in nonlinear Galerkin schemes for solving the spherical Navier-Stokes equation, in wavelet theory based on the 3-dimensional ball, and in multiscale solutions of the Poisson equation inside the ball, that have been presented at the 76th GAMM Annual Meeting in Luxemburg. Part A: A Nonlinear Galerkin Scheme Involving Vectorial and Tensorial Spherical Wavelets for Solving the Incompressible Navier-Stokes Equation on the Sphere The spherical Navier-Stokes equation plays a fundamental role in meteorology by modelling meso-scale (stratified) atmospherical flows. This article introduces a wavelet based nonlinear Galerkin method applied to the Navier-Stokes equation on the rotating sphere. In detail, this scheme is implemented by using divergence free vectorial spherical wavelets, and its convergence is proven. To improve numerical efficiency an extension of the spherical panel clustering algorithm to vectorial and tensorial kernels is constructed. This method enables the rapid computation of the wavelet coefficients of the nonlinear advection term. Thereby, we also indicate error estimates. Finally, extensive numerical simulations for the nonlinear interaction of three vortices are presented. Part B: Methods of Resolution for the Poisson Equation on the 3D Ball Within the article at hand, we investigate the Poisson equation solved by an integral operator, originating from an ansatz by Greens functions. This connection between mass distributions and the gravitational force is essential to investigate, especially inside the Earth, where structures and phenomena are not sufficiently known and plumbable. Since the operator stated above does not solve the equation for all square-integrable functions, the solution space will be decomposed by a multiscale analysis in terms of scaling functions. Classical Euclidean wavelet theory appears not to be the appropriate choice. Ansatz functions are chosen to be reflecting the rotational invariance of the ball. In these terms, the operator itself is finally decomposed and replaced by versions more manageable, revealing structural information about itself. Part C: Wavelets on the 3–dimensional Ball In this article wavelets on a ball in R^3 are introduced. Corresponding properties like an approximate identity and decomposition/reconstruction (scale step property) are proved. The advantage of this approach compared to a classical Fourier analysis in orthogonal polynomials is a better localization of the used ansatz functions.

In this work we introduce a new bandlimited spherical wavelet: The Bernstein wavelet. It possesses a couple of interesting properties. To be specific, we are able to construct bandlimited wavelets free of oscillations. The scaling function of this wavelet is investigated with regard to the spherical uncertainty principle, i.e., its localization in the space domain as well as in the momentum domain is calculated and compared to the well-known Shannon scaling function. Surprisingly, they possess the same localization in space although one is highly oscillating whereas the other one shows no oscillatory behavior. Moreover, the Bernstein scaling function turns out to be the first bandlimited scaling function known to the literature whose uncertainty product tends to the minimal value 1.

In modern geoscience, understanding the climate depends on the information about the oceans. Covering two thirds of the Earth, oceans play an important role. Oceanic phenomena are, for example, oceanic circulation, water exchanges between atmosphere, land and ocean or temporal changes of the total water volume. All these features require new methods in constructive approximation, since they are regionally bounded and not globally observable. This article deals with methods of handling data with locally supported basis functions, modeling them in a multiscale scheme involving a wavelet approximation and presenting the main results for the dynamic topography and the geostrophic flow, e.g., in the Northern Atlantic. Further, it is demonstrated that compressional rates of the occurring wavelet transforms can be achieved by use of locally supported wavelets.

We introduce splines for the approximation of harmonic functions on a 3-dimensional ball. Those splines are combined with a multiresolution concept. More precisely, at each step of improving the approximation we add more data and, at the same time, reduce the hat-width of the used spline basis functions. Finally, a convergence theorem is proved. One possible application, that is discussed in detail, is the reconstruction of the Earth´s density distribution from gravitational data obtained at a satellite orbit. This is an exponentially ill-posed problem where only the harmonic part of the density can be recovered since its orthogonal complement has the potential 0. Whereas classical approaches use a truncated singular value decomposition (TSVD) with the well-known disadvantages like the non-localizing character of the used spherical harmonics and the bandlimitedness of the solution, modern regularization techniques use wavelets allowing a localized reconstruction via convolutions with kernels that are only essentially large in the region of interest. The essential remaining drawback of a TSVD and the wavelet approaches is that the integrals (i.e. the inner product in case of a TSVD and the convolution in case of wavelets) are calculated on a spherical orbit, which is not given in reality. Thus, simplifying modelling assumptions, that certainly include a modelling error, have to be made. The splines introduced here have the important advantage, that the given data need not be located on a sphere but may be (almost) arbitrarily distributed in the outer space of the Earth. This includes, in particular, the possibility to mix data from different satellite missions (different orbits, different derivatives of the gravitational potential) in the calculation of the Earth´s density distribution. Moreover, the approximating splines can be calculated at varying resolution scales, where the differences for increasing the resolution can be computed with the introduced spline-wavelet technique.

In this paper we introduce a multiscale technique for the analysis of deformation phenomena of the Earth. Classically, the basis functions under use are globally defined and show polynomial character. In consequence, only a global analysis of deformations is possible such that, for example, the water load of an artificial reservoir is hardly to model in that way. Up till now, the alternative to realize a local analysis can only be established by assuming the investigated region to be flat. In what follows we propose a local analysis based on tools (Navier scaling functions and wavelets) taking the (spherical) surface of the Earth into account. Our approach, in particular, enables us to perform a zooming-in procedure. In fact, the concept of Navier wavelets is formulated in such a way that subregions with larger or smaller data density can accordingly be modelled with a higher or lower resolution of the model, respectively.