## G. Mathematics of Computing

### Refine

#### Keywords

- Angewandte Mathematik (1)
- Boltzmann Equation (1)
- Brownian Diffusion (1)
- CFD (1)
- DSMC (1)
- Eikonal equation (1)
- Geo-referenced data (1)
- Pedestrian FLow (1)
- Rarefied gas (1)
- Rigid Body Motion (1)

Many loads acting on a vehicle depend on the condition and quality of roads
traveled as well as on the driving style of the motorist. Thus, during vehicle development,
good knowledge on these further operations conditions is advantageous.
For that purpose, usage models for different kinds of vehicles are considered. Based
on these mathematical descriptions, representative routes for multiple user
types can be simulated in a predefined geographical region. The obtained individual
driving schedules consist of coordinates of starting and target points and can
thus be routed on the true road network. Additionally, different factors, like the
topography, can be evaluated along the track.
Available statistics resulting from travel survey are integrated to guarantee reasonable
trip length. Population figures are used to estimate the number of vehicles in
contained administrative units. The creation of thousands of those geo-referenced
trips then allows the determination of realistic measures of the durability loads.
Private as well as commercial use of vehicles is modeled. For the former, commuters
are modeled as the main user group conducting daily drives to work and
additional leisure time a shopping trip during workweek. For the latter, taxis as
example for users of passenger cars are considered. The model of light-duty commercial
vehicles is split into two types of driving patterns, stars and tours, and in
the common traffic classes of long-distance, local and city traffic.
Algorithms to simulate reasonable target points based on geographical and statistical
data are presented in detail. Examples for the evaluation of routes based
on topographical factors and speed profiles comparing the influence of the driving
style are included.

We present a numerical scheme to simulate a moving rigid body with arbitrary shape suspended in a rarefied gas micro flows, in view of applications to complex computations of moving structures in micro or vacuum systems. The rarefied gas is simulated by solving the Boltzmann equation using a DSMC particle method. The motion of the rigid body is governed by the Newton-Euler equations, where the force and the torque on the rigid body is computed from the momentum transfer of the gas molecules colliding with the body. The resulting motion of the rigid body affects in turn again the gas flow in the surroundings. This means that a two-way coupling has been modeled. We validate the scheme by performing various numerical experiments in 1-, 2- and 3-dimensional computational domains. We have presented 1-dimensional actuator problem, 2-dimensional cavity driven flow problem, Brownian diffusion of a spherical particle both with translational and rotational motions, and finally thermophoresis on a spherical particles. We compare the numerical results obtained from the numerical simulations with the existing theories in each test examples.

Pedestrian Flow Models
(2014)

There have been many crowd disasters because of poor planning of the events. Pedestrian models are useful in analysing the behavior of pedestrians in advance to the events so that no pedestrians will be harmed during the event. This thesis deals with pedestrian flow models on microscopic, hydrodynamic and scalar scales. By following the Hughes' approach, who describes the crowd as a thinking fluid, we use the solution of the Eikonal equation to compute the optimal path for pedestrians. We start with the microscopic model for pedestrian flow and then derive the hydrodynamic and scalar models from it. We use particle methods to solve the governing equations. Moreover, we have coupled a mesh free particle method to the fixed grid for solving the Eikonal equation. We consider an example with a large number of pedestrians to investigate our models for different settings of obstacles and for different parameters. We also consider the pedestrian flow in a straight corridor and through T-junction and compare our numerical results with the experiments. A part of this work is devoted for finding a mesh free method to solve the Eikonal equation. Most of the available methods to solve the Eikonal equation are restricted to either cartesian grid or triangulated grid. In this context, we propose a mesh free method to solve the Eikonal equation, which can be applicable to any arbitrary grid and useful for the complex geometries.