We study nonlinear finite element discretizations for the density gradient equation in the quantum drift diffusion model. Especially, we give a finite element description of the so--called nonlinear scheme introduced by {it Ancona}. We prove the existence of discrete solutions and provide a consistency and convergence analysis, which yields the optimal order of convergence for both discretizations. The performance of both schemes is compared numerically, especially with respect to the influence of approximate vacuum boundary conditions.