### Filtern

#### Schlagworte

- Multiobjective optimization (3)
- Approximation (2)
- Hypervolume (2)
- Subset selection (2)
- combinatorial optimization (2)
- connectedness (2)
- k-link shortest path (2)
- polynomial algorithms (2)
- Box Algorithms (1)
- Box-Algorithm (1)

We consider a variant of a knapsack problem with a fixed cardinality constraint. There are three objective functions to be optimized: one real-valued and two integer-valued objectives. We show that this problem can be solved efficiently by a local search. The algorithm utilizes connectedness of a subset of feasible solutions and has optimal run-time.

In a dynamic network, the quickest path problem asks for a path such that a given amount of flow can be sent from source to sink via this path in minimal time. In practical settings, for example in evacuation or transportation planning, the problem parameters might not be known exactly a-priori. It is therefore of interest to consider robust versions of these problems in which travel times and/or capacities of arcs depend on a certain scenario. In this article, min-max versions of robust quickest path problems are investigated and, depending on their complexity status, exact algorithms or fully polynomial-time approximation schemes are proposed.

In a dynamic network, the quickest path problem asks for a path minimizing the time needed to send a given amount of flow from source to sink along this path. In practical settings, for example in evacuation or transportation planning, the reliability of network arcs depends on the specific scenario of interest. In this circumstance, the question of finding a quickest path among all those having at least a desired path reliability arises. In this article, this reliable quickest path problem is solved by transforming it to the restricted quickest path problem. In the latter, each arc is associated a nonnegative cost value and the goal is to find a quickest path among those not exceeding a predefined budget with respect to the overall (additive) cost value. For both, the restricted and reliable quickest path problem, pseudopolynomial exact algorithms and fully polynomial-time approximation schemes are proposed.

A new algorithm for optimization problems with three objective functions is presented which computes a representation for the set of nondominated points. This representation is guaranteed to have a desired coverage error and a bound on the number of iterations needed by the algorithm to meet this coverage error is derived. Since the representation does not necessarily contain nondominated points only, ideas to calculate bounds for the representation error are given. Moreover, the incorporation of domination during the algorithm and other quality measures are discussed.

The hypervolume subset selection problem consists of finding a subset, with a given cardinality, of a nondominated set of points that maximizes the hypervolume indicator. This problem arises in selection procedures of population-based heuristics for multiobjective optimization, and for which practically efficient algorithms are strongly required. In this article, we provide two new formulations for the two-dimensional variant of this problem.
The first is an integer programming formulation that can be solved by solving its linear relaxation. The second formulation is a \(k\)-link shortest path formulation on a special digraph with Monge property that can be solved by dynamic programming in \(\mathcal{O}(n^2)\) time complexity. This improves upon the existing result of \(O(n^3)\) in Bader.

The hypervolume subset selection problem consists of finding a subset, with a given cardinality \(k\), of a set of nondominated points that maximizes the hypervolume indicator. This problem arises in selection procedures of evolutionary algorithms for multiobjective optimization, for which practically efficient algorithms are required. In this article, two new formulations are provided for the two-dimensional variant of this problem.
The first is a (linear) integer programming formulation that can be solved by solving its linear programming relaxation. The second formulation is a \(k\)-link shortest path formulation on a special digraph with the Monge property that can be solved by dynamic programming in \(\mathcal{O}(n(k + \log n))\) time. This improves upon the \(\mathcal{O}(n^2k)\) result of Bader (2009), and matches the recent result of Bringmann et al. (2014), which was developed independently from this work using different techniques. Moreover, it is shown that these bounds may be further improved under mild conditions on \(k\).

In this paper we generalize the classical shortest path problem in two ways. We consider two objective functions and time-dependent data. The resulting problem, called the time-dependent bicriteria shortest path problem (TdBiSP), has several interesting practical applications, but has not gained much attention in the literature.

Selection of new projects is one of the major decision making activities in any company. Given a set of potential projects to invest, a subset which matches the company's strategy and internal resources best has to be selected. In this paper, we propose a multicriteria model for portfolio selection of projects, where we take into consideration that each of the potential projects has several - usually conflicting - values.