### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Bericht (26) (entfernen)

#### Schlagworte

- Integer programming (4)
- hub location (3)
- Heuristics (2)
- Logistics (2)
- Supply Chain Management (2)
- facility location (2)
- software development (2)
- supply chain management (2)
- : multiple objective programming (1)
- Assigment (1)

#### Fachbereich / Organisatorische Einheit

- Fraunhofer (ITWM) (24)
- Fachbereich Mathematik (2)

In this paper, a new mixed integer mathematical programme is proposed for the application of Hub Location Problems (HLP) in public transport planning. This model is among the few existing ones for this application. Some classes of valid inequalities are proposed yielding a very tight model. To solve instances of this problem where existing standard solvers fail, two approaches are proposed. The first one is an exact accelerated Benders decomposition algorithm and the latter a greedy neighborhood search. The computational results substantiate the superiority of our solution approaches to existing standard MIP solvers like CPLEX, both in terms of computational time and problem instance size that can be solved. The greedy neighborhood search heuristic is shown to be extremely efficient.

In this paper, we are going to propose the first mathematical model for Multi- Period Hub Location Problems (MPHLP). We apply this mixed integer program- ming model on public transport planning and call it Multi-Period Hub Location Problem for Public Transport (MPHLPPT). In fact, HLPPT model proposed earlier by the authors is extended to include more facts and features of the real-life application. In order to solve instances of this problem where existing standard solvers fail, a solution approach based on a greedy neighborhood search is developed. The computational results substantiate the efficiency of our solution approach to solve instances of MPHLPPT.

Territory design may be viewed as the problem of grouping small geographic areas into larger geographic clusters called territories in such a way that the latter are acceptable according to relevant planning criteria. In this paper we review the existing literature for applications of territory design problems and solution approaches for solving these types of problems. After identifying features common to all applications we introduce a basic territory design model and present in detail two approaches for solving this model: a classical location–allocation approach combined with optimal split resolution techniques and a newly developed computational geometry based method. We present computational results indicating the efficiency and suitability of the latter method for solving large–scale practical problems in an interactive environment. Furthermore, we discuss extensions to the basic model and its integration into Geographic Information Systems.

In this paper we consider short term storage systems. We analyze presorting strategies to improve the effiency of these storage systems. The presorting task is called Batch PreSorting Problem (BPSP). The BPSP is a variation of an assigment problem, i.e., it has an assigment problem kernel and some additional constraints. We present different types of these presorting problems, introduce mathematical programming formulations and prove the NP-completeness for one type of the BPSP. Experiments are carried out in order to compare the different model formulations and to investigate the behavior of these models.

In this article, we consider the problem of planning inspections and other tasks within a software development (SD) project with respect to the objectives quality (no. of defects), project duration, and costs. Based on a discrete-event simulation model of SD processes comprising the phases coding, inspection, test, and rework, we present a simplified formulation of the problem as a multiobjective optimization problem. For solving the problem (i.e. finding an approximation of the efficient set) we develop a multiobjective evolutionary algorithm. Details of the algorithm are discussed as well as results of its application to sample problems.

We present two heuristic methods for solving the Discrete Ordered Median Problem (DOMP), for which no such approaches have been developed so far. The DOMP generalizes classical discrete facility location problems, such as the p-median, p-center and Uncapacitated Facility Location problems. The first procedure proposed in this paper is based on a genetic algorithm developed by Moreno Vega [MV96] for p-median and p-center problems. Additionally, a second heuristic approach based on the Variable Neighborhood Search metaheuristic (VNS) proposed by Hansen & Mladenovic [HM97] for the p-median problem is described. An extensive numerical study is presented to show the efficiency of both heuristics and compare them.

The Discrete Ordered Median Problem (DOMP) generalizes classical discrete location problems, such as the N-median, N-center and Uncapacitated Facility Location problems. It was introduced by Nickel [16], who formulated it as both a nonlinear and a linear integer program. We propose an alternative integer linear programming formulation for the DOMP, discuss relationships between both integer linear programming formulations, and show how properties of optimal solutions can be used to strengthen these formulations. Moreover, we present a specific branch and bound procedure to solve the DOMP more efficiently. We test the integer linear programming formulations and this branch and bound method computationally on randomly generated test problems.

Territory design and districting may be viewed as the problem of grouping small geographic areas into larger geographic clusters called territories in such a way that the latter are acceptable according to relevant planning criteria. The availability of GIS on computers and the growing interest in Geo-Marketing leads to an increasing importance of this area. Despite the wide range of applications for territory design problems, when taking a closer look at the models proposed in the literature, a lot of similarities can be noticed. Indeed, the models are many times very similar and can often be, more or less directly, carried over to other applications. Therefore, our aim is to provide a generic application-independent model and present efficient solution techniques. We introduce a basic model that covers aspects common to most applications. Moreover, we present a method for solving the general model which is based on ideas from the field of computational geometry. Theoretical as well as computational results underlining the efficiency of the new approach will be given. Finally, we show how to extend the model and solution algorithm to make it applicable for a broader range of applications and how to integrate the presented techniques into a GIS.

The problem discussed in this paper is motivated by the new recycling directiveWEEE of the EC. The core of this law is, that each company which sells electrical or electronic equipment in a European country has the obligation to recollect and recycle an amount of returned items which is proportional to its market share. To assign collection stations to companies, in Germany for one product type a territory design approach is planned. However, in contrast to classical territory design, the territories should be geographically as dispersed as possible to avoid that a company, resp. its logistics provider responsible for the recollection, gains a monopoly in some region. First, we identify an appropriate measure for the dispersion of a territory. Afterwards, we present a first mathematical programming model for this new problem as well as a solution method based on the GRASP methodology. Extensive computational results illustrate the suitability of the model and assess the effectiveness of the heuristic.